
Artificial Intelligence: Knowledge Representation and Reasoning

Prof. Deepak Khemani

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Module – 02

Lecture - 02

We were looking at the language of propositional logic while looking at the syntax of the
language and we had seen in the last class that the alphabet of propositional logic consists of
two parts in fact the alphabet of any language consists of two parts; one is the logical part
which is kind of domain independent and common to all logics and the other is non logical
part which is; which is the part which I stalking about the domain essentially. In our case
since  we  are  talking  of  the  propositional  logic  language  the  domain  dependent  part  is
basically a set of symbols which will stand for certain statements in the domain essentially;
and these symbols are the atomic sentences. So when we look at the language, we define this
as  a  pair  where we choose a  set  of connectives;  as  I  said you can choose the subset  of
connectives and a set of formulas. So the set of formulas is chosen by first choosing a set of
atomic formulas and then defining the rest of the language essentially. So let’s call the set of
formulas F we want to define what this set it essentially. And let’s call this set of atomic
formulas as P; that’s given to us; that’s the basic unit essentially. 

 (Refer Slide Time: 02.19)



So  this  set  F  is  defined  as  by  structural  recursion  as  follows;  that  these  two  symbols
propositional constants that we had they will belong to the set of formulas of a propositional
language F; by definition they are always there; then if anything belongs to the set of atomic
formulas than that thing belongs to the set of formulas so in other words all atomic formulas
are formulas and all atomic symbols are formulas. And if alpha belongs to the set of formulas
then the expression not alpha also belongs to the set of formulas so this symbol, this unitary
connective we are talking about; we will call this as not, and finally if alpha and beta belongs
to the set for formulas then; we often use brackets but we don’t always need to, so for every
binary connective that we have in our language we can take up two formulas and connect it
using that binary connective  and produce the new formula essentially so in this way the set
of formulas is constructed. What is the size of this set supposing the size of P is five; that
means I start with five statements and I want to do some reasoning with those five statements.
The set of formulas that you can construct is essentially infinite because you can always keep
constructing bigger and bigger and bigger formulas which will combine them using different.

 (Refer Slide Time: 4.42)

So this set F is essentially is the set of sentences in our language and we are interested in
knowing which of these sentences are true and which of these sentences are false.

 (Refer Slide Time: 5.21)



 So let’s talk about the truth values of sentences or semantics which is concerned with truth
values. As we said a little while earlier that there is one notion of semantics which is as to
what does is mean but in our case of propositional logic there is nothing really complicated
like that because we have said that these are propositional variables and you can actually plug
in anything you want. He can stand for anything you are interested in essentially. What we
are interested in is that when we construct larger and larger compound sentences which of
them will be true and which of them will be false. So for atomic sentences propositional
variables we have a valuation function; let’s call it v which maps a set of atomic formulas;
two values set, so let us use this set T and F so throughout the course we will use this two
values set to stand for truth values. As far as between us we will call the first element as true
and the second element as false. And we will  try to associate these two values with our
domain. So whatever we think is true in our domain we will want to map to this symbol T
and whatever is not true we will map to the symbol false essentially. So for atomic sentences
the valuation is given externally; somebody tells you which statement is true which statement
is false.  So you cannot determine it. 

 (Refer Slide Time: 8.31)



But  for  rest  of  the  formulas  we  determine  the  truth  values  using  the  meaning  of  the
connectives. So we will make statements like this that if alpha is equal to T.  This is the short
form; I don’t know whether we should use or not; let’s assume we will use this short form; so
this short form alpha is equal to true essentially stands for alpha is true. To be more precise
we should have said something like val alpha is equal to true. 

 (Refer Slide Time: 9.17)

But since we are dealing with the propositional logic we will use the short form at least for
the time being. When we will move to the first order logic we will see that the equal symbols
has its own meaning that will be the part of the language and therefore we have to you known
give a different.



For this we will do for PL only. If alpha is equal to true then not alpha is equal to false. So
this gives us how to arrive at a truth value of a sentence which is made up using the negation
sign.  You are familiar  with this  idea of truth tables so we can construct a truth table for
negation, so we can say alpha is true or false then not alpha is false or true 

 (Refer Slide Time: 10.37)

Likewise, we can construct truth tables as you are familiar with for other connectives so let
me do a few examples so the other  connectives are  binary connectives so they take two
values. So let’s say alpha and beta and the values are either true true false false or true; these
are  the  four  combinations  of  values  that  we  can  look  at  and  we  can  define  different
connectives so what is the meaning of alpha and beta so no doubt you are familiar with this.
We read  this  as  and  the  semantics  is  defined  as  both  the  constituents  must  be  true  so
whenever both are true this is true, in all other cases this is false. 

 (Refer Slide Time: 12.00)



Alpha or beta this is or and it’s the inclusive or so if either one is true it is true else it is false.
Let’s  do  a  couple  of  more,  equivalence,  so  when  I  write  equivalence  it  means  alpha
equivalent to beta so both must have the same value in which case it is true and both have the
same value it is true and otherwise when they have different values it is false . Exact opposite
of this is the symbol or ex or or exclusive or which is true only when they are both different
and  its  false  otherwise  so  you  can  see  that  between  xor  and  equivalence,  they  are  the
complement of each other. 

 (Refer Slide Time: 13.02)

From this you can kind of guess that if you are having the formula of the kind not of alpha
xor beta then this must be logically equivalent to alpha equivalent to beta so the point of this



exercise is to show that you can say same things in different ways even in the language like
logic. You want to say that both are; both alpha and beta take the same truth value you can
either use this simple expression which says that a alpha is equivalent to beta or you can say
it in a slightly roundabout way which is that not alpha xor beta. One equivalence that we will
often use is that instead of saying that instead of saying that alpha implies beta we can say not
alpha or beta. So I have not defined implication here but I will leave it as a small exercise for
you to define implication and the other this thing. So the question we can ask that how many
binary connectives are there?   Because you can fill in this column in sixteen different ways
we can actually have sixteen different binary connectives and the next question is do we need
all of them essentially? 

 (Refer Slide Time: 15.10)

So the question we are asking is how many binary connectives do we need? SO we just saw
an example in which we said that if you have alpha implies beta than you can actually replace
it with not alpha or beta. They will have and you should do as a small exercise, construct a
truth table 

 (Refer Slide Time: 16.30)



Likewise if we have alpha and beta then we can actually replace it by so let me use the
standard notation is equal to not not alpha and beta which is equivalent to not not alpha not
beta so the interesting thing is we can do away with these two symbols we can do away with
implication and and whatever you wanted to say with implication, whenever we wanted to
say alpha implies beta instead we could have have said not alpha or beta likewise whenever
we wanted to say alpha and beta we could have said not of not alpha or not beta. So the
exercise is show that the set of negation and or is complete. What do we mean by complete is
every that can be said by other connectives can be said using these two connectives? 

 (Refer Slide Time: 18.08)



So there is a notion of completeness in the choice of logical connectives that we use and what
people were trying out long time ago was trying out different combinations of connective and
trying to say which is a good set to work with essentially. So we will see a little bit later when
you look at Hilbert systems, they work only with implication essentially. Only one thing. But
the thing is that implication is not complete so you can do certain things with Hilbert system
but then we will look at also Fregis axiomatic system and Fregis actually showed that this set
of negation and implication is complete which means that anything you want to say using any
of these binary connectives and negation can be said only with negation and implication. So
other sets which were of interests were which we will see later is this set of negation or and
and which we will use in one of our proof procedures. Then you would have heard about
NAND and NOR, these were known as sheffer stroke and Pierce arrow because they were
shown by sheffer and pierce. These are single connectives. This NAND is equal to NOT of
and, so if you take and truth table and just flip it you will get nand and nor is not of or and it
has been shown and those of you who have studied Boolean circuits would know that the
nand gate and nor gate are enough to construct any circuit that you want which also means
that anything you want to say in propositional logic can be said just by the nand gate and the
nor gate. Only one connective is enough essentially. One more question I want to ask is what
about let’s say ternary connectives and other higher order connectives? Do we need them? Do
we  need  something  which  will  say  that  I  want  to  connect  three  formulas  to  form  one
compound formula? Because all the connectives we have seen are binary connectives, they
take two formulas and give you one compound formulas, what about taking three at a time or
four at a time or five at a time. Can we say something more than with those things? Again we
will not go in the details but it has been shown that everything you can say with higher arity
connectives can be said with binary connectives and everything that can be said with binary
connectives can be said with any of these sets which is complete. So not and or is complete,
not or and is complete, nand is complete, nand is complete nor is complete. So we can use
any of them.

 (Refer Slide Time: 21.58)



 So what we have done now is to define a language and we have said we started with an
alphabet, the alphabet consists of binary connectives and as we said we can choose a subset
plus a set of propositional symbols and then through structural recursion we have determined
the set of formulas that can be expressed in the language essentially. Then we looked at the
semantics and we said as to how do you determine the truth value of a sentence essentially.
We didn’t write it explicitly but we will have statements like if alpha is equal to t and beta is
equal to t then alpha and beta is equal to t else alpha and beta is equal to false, we could have
said statements like this. So it means that for any given formula you can determine its truth
value based on the truth value of the inputs. So let us say that we have p is equal to t and q is
equal to false and r is equal to t essentially; and this is the set we are given, so we are given
three propositional variables and we are giving a valuation function which says p is true and q
is false and r is true, then we take an arbitrary formula q implies r and r implies p and the
whole thing is equivalent to r or t, some random formula I have written. The question I would
like to ask is and you know that we can construct an infinite set of formulas like this. So
given any arbitrary formula like this the question we are interested is this formula true or is
this formula false, based on the fact that we have been told that p is true an q is false and r is
true essentially.

 (Refer Slide Time: 24.35)

So we can now of course break it down. We can now see that r is true, sorry I don’t have q, I
could have used the tau symbol but let’s just use something simpler q, so we said that this is
false and r is true so this formula by the semantic of or becomes true because at least one
should be true and q is false and if you look at the truth table of q you will see that whether r
is true or not doesn’t really matter so this becomes true. Since this is true the whole formula
is true irrespective of what is the valuation of r and p because of the or connective here and
because this is true and this is true, this whole formula becomes true. So we can take any
arbitrary formula and evaluate its truth value by plugging in the value of that essentially. But
this  is  dependent  upon  the  fact  that  we  have  been  given  a  valuation  function  for  this
valuation. 



 (Refer Slide Time: 26.37)

So in general there are three kinds of formulas. Remember that we have defined this set of
formulas given a language essentially. This set is partitioned in to three kinds of formulas.
One is called tautologies which are always true and this is determined by the last column in
the truth table has all Ts essentially. If you construct the truth table for that particular formula,
then  the  last  column in  the  truth  table  will  always  be  Ts and  such  formulas  are  called
tautologies.  The  examples  are,  no  doubt  you  are  familiar  with  such  things,  p  or  not  p,
obviously since one of them have to be true or p implies p which you will recognize as the
same formula said in the different way and so on. There can be many many tautologies. Then
we have contradictions or unsatisfiable, these are formulas which are always false, when you
look at this statement here for this one, it will be all fs. In unsatisfiable it will always false
irrespective of what valuation you choose for the constituent atomic sentences, that formula
will  always be false  and again you are familiar  with formulas like this  p and not p is  a
classical example of a contradiction essentially. The third kind of formulas are known as
contingencies. True in some rows which is  equivalent to saying true for some valuations
because each row in truth table corresponds to a valuation, you are saying p is true or q is
false or r is true or false. Each row corresponds to a valuation and contingencies are formulas
which are true for some rows and not all rows essentially. We also call them as satisfiable
formulas. Strictly speaking the set of satisfiable formulas also include tautology. But we can
find a valuation that can satisfy the formula and example of that is p implies q a simple
formula which will be true in some rows and false in some rows as indicated by the truth
table essentially. 

 (Refer Slide Time: 31.25)



Ok so this defines the syntax and semantic of propositional logic. In the next class we will
look at proof methods essentially. How do we arrive at these truth values through different
process which is the proof process essentially? 


