
Artificial Intelligence:  

Incompleteness of Forward Chaining and Backward
Chaining

Prof. Deepak Khemani 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

Module – 07 

Lecture - 01

So lets come back to the topic of theorem proving and remember 
we had these basic notions of entailment which says that a 
knowledge base entails a formula alpha. And then we had the 
notion of Proof which said that knowledge base can derive a 
formula alpha. And then we had the notions of soundness and 
completeness. In particular we are interested in completeness 
which says that if something is entailed then we should be able to
derive it. The opposite is soundness which is that if we can derive 
it, it must be true or it must be entailed. 

Now we have looked at two methods so far, we have looked at 
forward chaining and what forward chaining does is that given a 
knowledge base of some facts. So when we say facts I mean two 
sentences which in the sense of rule based systems means 
include both facts and rules but you can keep adding new things. 
In a forward chaining system which is data driven you have 
something in your knowledge base, you can make some 
inferences and then you can keep adding those inferences to the 
knowledge base so that the knowledge base tends to grow 
essentially and the hope is that eventually you will add the 
formula that you are looking for. If there was some formula called 
alpha that you wanted to show to be true then eventually that will
be added essentially. 



That’s the notion of completeness essentially. In backward 
chaining you try to find rules which will make alpha true which 
means we have things like you try to look for rules of a kind Beta 
prime implies alpha prime and you try to unify this with this and 
then produce a subgoal beta or you can have another subgoal 
beta prime prime depending on how many rules you have. You try
to work backwards from the thing you want to show and hopefully
you will reach the set of facts that you have. 

(Refer Slide Time: 03:40)

So our example was you have Man Socrates and Man X implies 
Mortal X and the query was Mortal Socrates. So in backward 
chaining you reduce this to Man. So if there is a query you reduce 
this query to Man Socrates and this formula will match this 
formula essentially. 

(Refer Slide Time: 4:25)



In forward chaining you will add Mortal Socrates at some point 
may be other things you could have added first and hopefully 
when you add Mortal Socrates then you can terminate. So one 
advantage of backward chaining is low branching. And which is 
why very often people prefer to do things something like. But we 
saw in both the cases you may have to write the rules carefully. 

Now lets look at a couple of examples which show that both Cs 
are incomplete. So the first example is consider this set of 
formulas. We have very small knowledge base here. You have 
three statements, you are saying that a is on the table and b is on
the table and one of them atleast is green, so green  a or green b.
and lets say our goal is to show there exists something which is 
on the table and which is green. So first of all lets call this formula
alpha, we want to show that alpha is true. Alpha is a statement 
that there exists an alpha such that ontable x is true and green x 
is true. 



So lets ask the question. Is this the case, is this statement 
entailed by the knowledge base. Does the knowledge base 
necessarily imply that there is something on the table which is 
green. The answer is yes because we know that there are these 
two blocks and we know that atleast one of them is green so this 
statement that there exists something in the knowledge base 
which is green is true. 

7:49

 Long pause

(Refer Slide Time: 8:08)

But unfortunately this case doesn’t hold, cannot prove it. 
Irrespective of whether you want to do forward chaining or 
backward chaining you cannot prove this fact. Infact there are 
hardly any rules in the knowledge base, in fact the best you can 
try to do is convert this into a rule. You could say not green a 
implies green b. you can rewrite it as implication and think of it as
rule. But it doesn’t help much really, because there is nothing to 
say that you know whether a is green or b is green, we know one 



of them is green not both. So this is an example which illustrates 
that while forward chaining and backward chaining can work well 
in many situations, these are not methods which are complete 
and there are true facts which you cannot derive. 

This example is from a book by Sharniac  and McDevott. The 
second example that I am showing you is from this our book that 
we are following which is Reckman and Lev is essentially.  So that 
was example 1. So example 2 is also from a blocks world kind of a
domain and I have 3 block lets say A, B, C. and I know that this is 
green, and this is not green which ofcourse I can write as a 
knowledge base. On A B, on B C, green A, not green B. so I have 
these 3 blocks which are stacked up. A is on B, B is on C and I 
know that A is green and I know that B is not green. And my goal 
let me call it beta is there exists a x, there exists a y such that on 
x y and, may be I should use And symbol directly.  And green x 
and not green y.  So does KB2 entail beta?

What is the query? That is there a green block sitting on top of a 
non green block. So is it true?

(Refer Slide Time: 11:49)



 So A is green C is not green. Actually I drew the figure. I want to 
show that there is a green block lying on block which is not green.
In fact Reckman and Lewis, use an example to show that 
entailment sometimes is not this obvious. But if you give it a 
thought you will see that this statement is indeed true because 
there are two possible cases: one is either B is green or the other 
is that B is not green. If B is green then B is on C A and C is not 
green. If B is not green then A is on C and it is green.

Again it turns out that we are not able to derive it and may be you
can just give it a bit of try. So this gives us a motivation to look for
another method and we have already seen this method except we
saw it in the case of propositional logic. And its called the 
Resolution method. So just to highlight this fact let me just work 
with these two examples to start with. And then we will go to the 
details, revisit the algorithm in a little bit more detail. So lets take 
Example 1. What are the facts given to us? On table A. The other 
fact given to us is on table B. and the third fact given to us is one 
of them is green. 



So you might recall that the resolution method requires the things
to be in conjunctive normal form, all the formulas. In this case, all 
these three formulae are already in conjunctive normal form, they
are very simple formulae so we can work with them directly. we 
will see later on, we will see the method of converting them. So 
this is given to us and the goal is that there exists x on table x, 
and green x. so if you remember the resolution refutation method 
we negate it, so which means we get this formula. Or let me use 
the original color to suggest that this is what we are working with.
So you should remember that the resolution refutation method 
suggests to negate the goal and add the negation of goal to set of
facts or the set of formulae that we have.

But we must first convert them into clause form. To convert into 
clause form we know that this is equivalent to for all x, I will push 
the not inside twice in one step, on table x or not green x. which 
when I convert into implicit quantifier form I get this not on. 

So that is the clause that I add to the set. And I need to show that 
the set of four clauses that I have is unsatisfiable, and if you 
remember that in the resolution refutation method it amounts to 
being able to derive the null clause essentially. So how do we do 
that? So lets resolve this with this first. We have already looked at
unification, so we will need to apply unification to make two 
formulae true. So given that this not green x we can match either 
with green B or green A, it doesn’t matter so lets say we say that 
x is equal to B. then we will get not green B here or not on table B
here. So when we resolve these two clauses we will get not on 
table B or green B. Just let me know if I am making any error. In a 
similar fashion we can also say that x is equal to A and we will get
not on table A or green B.

(Refer Slide Time: 19:01)



Now using this and this one, because on table A is there we get 
green B.  And if I use this and this by saying that x is equal to B 
again I will get not green B. and then from this and this I will get 
the empty clause. So this is one way of deriving empty clause. 
You see that we were successful in deriving empty clauses. And 
this is something we could not prove using forward chaining or 
backward chaining. 

(Refer Slide Time: 20:44)



So I will leave the second example I gave which was three stacked
up blocks as exercise for you to work on to show that it can be 
shown in the refutation method. So one thing that we need is to 
convert formula into clause form. and when I say clause form I 
mean that the formula should look like this, for all x1, for all x2, 
for all xn, and there should be a CNF formula here. So this 
particular form is called is called a clause form where there are 
only universal quantifiers all outsideto the left and inside the 
bracket we have the formula in conjunctive normal form. there are
no quantifiers inside, there are no quantifiers no implications, only
the CNF form and or and not and everything should be in that 
form.

So one of the first things we need to do is to convert formulas into
clause form. so lets look at a way of doing that. What is the 
algorithm for converting. So first step is 1.  Take existential 
closure. So it basically means that if x is free then introduce there 
exists x. because we want to talk about sentences and we had 
said that formulas with free variables are not sentences so we will
first convert it into a sentence by saying that whenever we have a



formula like with a free variable, so lets say x is greater than 13 
for example, then what I really mean is that there exists an x such
that x is greater than 13. So I will just add an existential quantifier
for that particular variable essentially. 

2. Then we have already seen this Standardised variables apart. 
Because one of the goals of converting to clause form is we don’t 
want to handle quantifiers so once we have it in clause form and 
since all the quantifiers are outside the square brackets we can 
just throw them away. But if we do that we have to be careful that
whenever we used two instances of the same quantifier we must 
use a different variable name. and that’s what we had said when 
we were looking at forward chaining as well. 

3. Eliminate all connectives and we have seen how to do that. And
we will see one more example. The implication can be P implies Q
can be replaced by not P or Q. P equivalent to Q can be replaced 
by P implies Q and Q implies P and so on and so forth. 

You push the negation inside because you have seen that 
negation can create havoc for example with the nature of 
variables. So if we have formula like there does not exist x which 
something something then you should push inside and convert it 
into a for all x formula. 

Push the quantifiers also inside. So the scope of each quantifier is 
as tight as needed. This is again good for clarity. 

Eliminate the existential quantifier, this we have already studied. 
This is a process of Skolomization. How to eliminate a existential 
quantifier so if you remember every existentially quantifier 
variable we either replace it with the skolem constant or with a 
skolem function of universally quantified variables. We will may 
be see an example. 

Now that you have eliminated the existential quantifier you can 
bring all the universal quantifier outside without changing the 
meaning of the formula essentially. 



Since we want it to be in CNF we have to distribute AND over OR. 
We will revisit it if necessary

Simplify. Sometimes you find that you have redundant set of 
formulae and you can simplify them to reduce the actually 
occurances. And finally rename clauses. 

(Refer Slide Time: 28:27)

Because you may end up using clauses again  and again it is best 
to rename all the different clauses with different variable names. 
If you do this you will end up with a formula which is in clause 
form. so in the next class I will start with an example of 
converting a formula into clause form and then we will look at an 
example of resolution method again. And if we have time we will 
revisit the earlier example which we did not show. 

 


