Artificial Intelligence:
Data Retrieval in Backward Chaining
Prof. Deepak Khemani
Department of Computer Science and Engineering
Indian Institute of Technology, Madras
Module - 06
Lecture - 01

Okay so we return to this topic of deductive retrieval. And we want to look at an
alternative approach which is backward chaining. So lets first recall what we have
studied so far. So far we have looked at forward chaining. And what forward
chaining did was that given a knowledge base which contains some facts. So lets
say these small circles represent facts and some rules whatever inferences we can
make we go ahead and make. So if we can somehow add a new sentence to the
knowledge base you add it. add another new sentences so you keep adding new
sentence so obviously you can see that this is kind of a uncontrolled process and
the hope is that if you want to prove a sentence alpha lets say it is here then
eventually you will end up adding it.

Now you can see that the number of inferences you can make is proportional in
some sense to the size of the knowledge base. So the more the facts and rules you
have the more the new facts and rules you can add. So it kind of tends to go rapidly
and you are only hoping that at some point you will end up adding the fact alpha to
that. So you can say forward chaining is eager as some people call it Assertion
Time. And by this we mean that if you can make some inference go ahead and
make it. whenever you assert a fact and if that fact leads to a new fact infer the
facts. Ofcourse you may be constrained by the fact that you can do only one
inference at a time so you may have to choose a particular strategy and we saw
that when we looked it OPS5 and Rete net that it allowed us to use some sort of a
conflict resolution strategy which decided which rule to apply to which fact.

But that’s a different matter. But you make whatever inferences you can make and
the hope is that eventually you will make the inference you are interested in which
is the sentence alpha that we want to generate. So this is also data driven. Now
what we want to look at is this process of backward chaining which is in contrast
lazy. So the evaluation is lazy which means its query time. Whenever you want a
certain formula you want to query about a certain formula then you make start
doing the inferences. Its also as opposed to data driven its also goal directed. That
another word that we often use is teleological. Goal oriented trying to achieve a
certain goal. So if you remember what forward chaining the basic idea behind
forward chaining was that we use modified modus ponens rules which said that if
you have lets say beta implies gamma and you are given beta prime and if you can
unify them with some substitution theta then from this infer gamma theta. Apply
that substitution to gamma and you get theta so that’s data driven.

So you are moving from the antecedents of the rule towards the consequent. In
backward chaining what we do is so if you want to say that we have a query lets say
in this case this query is alpha that we are interested in. and we will write this by
saying Show alpha. Or we can write it by saying Goal alpha. So if you have a goal
alpha which means you want to show that alpha is true. Then we say that if we have
a rule lets say again of the same kind beta implies gamma and if you can unify
alpha and gamma again lets say with theta. Then from this you say show beta theta
or you can say that goal is beta theta. So in some sense this was the query or goal
and this is the subquery or subgoal.

(Refer Slide Time: 7:19)

_1 pr,,:__,u,v_m RSt EEEEENE Ol w

Deduchpnrz R(/tvtw‘{' wth Doatkarmd W

J
LA'Z\f = e
74 ﬂfw:;?/(MM

J
Show 36— Sl p7 /|
“?éi o S God O b il

So let me illustrate this with out favorite example which said that Man x implies
Mortal x. and lets say we have certain facts in our knowledge base as we have been
talking Man Socrates. Then our goal is Mortal Socrates then you can see that we can
unify this with this by saying x is equal to Socrates. And we can reduce it to a
subgoal Man Socrates. And this subgoal we obtain by applying this substitution x is
equal to Socrates to the left side of the antecedent. And so we have a goal Man
Socrates. If you can find a goal sentence in the knowledge base we stop. So that is
a termination criteria. So in backward chaining we are moving from the consequent
to the antecedent. Now interesting this is that we can extend this idea to existential
queries. So we can say that our goal is let me first write in first order logic. There
exists an x Mortal x. this is the kind of queries that you make typically with
databases. Is there an employee who has been working for three years and whose
salary is more than 10 thousand rupees. Then you want to retrieve answers to that.
That’'s why we call it deductive retrieval in this case.

Now the thing about our existential query is that we will reverse the skolemization
convention. Our skolemization convention so far was that universally quantified
variable will be marked with a question mark in front of the variable name. but for
goals we will reverse this convention and it still stands for existential. Which means
that we will express this query as Mortal x. so remember that now this question
mark x stands for an existential query. So we are not saying that show that
everybody is mortal. We are saying that is there someone who is mortal. Is there
some x which is mortal.

Now we can see that with this query and with this same fact we can now have a
subquery or subgoal. So it happens that | have used same variable name but ideally
| should have used a different variable name. and then you would have said for
example y is equal to x or something like that. But it doesn’t matter as long as you
remember that that should be done. So we have a subquery called man x. so again
we look into our database and we see that yes there is a sentence of the kind man
Socrates and we can answer yes to this. So in the first case we can return an
answer saying yes. In the second case with an existential query we can return an
answer yes again that yes the sentence if true that there exists an x such that x is
mortal. But we can also say that x is equal to Socrates. We can return a value
essentially. So instead of Man Socrates if we had another sentence which said that
Man father lets say Suresh then if we had to match this with this then our answer
would be yes father of Suresh is mortal. Remember the original query was is there
someone who is mortal we could have answered yes Suresh’s father is mortal or
Socrates is mortal. And things like that so we can work with existential queries and
return answers to that.

(Refer Slide Time: 13:42)

|3 7R 27-Feb - Windows Joum
ie Edn View Imen Actoms T

) Db 09¢s - FHI @ -S«- EEEEEEE m »

Eaampte
Man (20N > Mool ()

-« - Ml [Sl)
MM[%;@B \4‘({,{%:%
gl © Hom [5r2) ES
Mo, (datbn ((sunerkd) EXISTENTIAL QUEPIES
' DD M“/[‘t)
/\ Man(2Q) sub yo¥ /M

s o Skolemiz i,
\\/ P Bt ETIET

Mofel (7)) SYES | y= smutes

The interesting thing is we can now extend this ability to do something which we
call as programming. So lets take an example. Append two lists you are given two
lists and you need to write a program to append those two lists. So for example if
you are given the list. So we will use square brackets to represent list. This is a list.
You must return an appended list is This is a list. So this is a task you may have
written a program to append two lists there are various ways of doing that. What we
do with logic is that we are saying ok what we do when we are working with logic is
that we give a logical description of what does it mean to append. And we do that
by defining sentences. So how do we do that. So in the case of append we say that
this sentence is true append let me call it x1. So our schema is append list1 list2
list3 where this is list3 this is list2 this is listl. So our predicate append is true if the
first and the second give you a third list. So if you say append a b ¢ d abcd then it is
true. If | say something like append bc ad then this is false.

So that’s the meaning of the predicate append. That it will be true if the first
argument appended to the second argument gives you the third argument as a list
and all the three arguments are lists. And this one statement what we have written
about append says that if you append the empty list with any list which you call x1
then you get x1. Which is obviously a true statement because you append an empty
list to a list you get the first list back. The second sentence we write is that if you
were to append x y to give you z then okay | need to reduce the little bit of notation
here. We will represent a list by cons pair notation. So there is this notation called
as cons pair notation which is how internally lists are represented and this cons
word comes from the language Lisp so you have studied the language lisp and you
know that there is an operator called cons which takes two arguments. Cons head
and tail so a list will always be represented as cons head with tail. So if | have a list
made of b and c then it would be represented as an element b here followed by
element ¢ here followed by nil. So the list bc would be represented as cons of b with
cons of ¢ with nil. So cons is a pair it tells you which is a head and which is a tail.

(Refer Slide Time: 19:41)

Edt Vi Actions Toak Help
DL OO ([-2 - - EEEEEEN (L »

PROGRAMMING Py JAL
EV[W{(’—@7/%{1«\1{%% g: [P ,,,,j[_f;x bA)
Y
dovonpTon, (tho i o bsl)~4A3
oyt Eﬁ%w syrod. SCHEMA
Crrond (G, 6AZ, LA13)

Appeit [‘[ZL b)(=4) [ab:ﬂ?) Tame
spred. (1) (k) 020 f

1., oppend [md | X, .’%I)

2. oppod (?%"973?25 = [cons pare mdidom
2 Corvp (Chead 7'{,‘4,;/)
(%} b Cro((b et (0,
mr-‘ﬂ C - wiL

And in this tree you see here there are two cons pair each has a left hand side and
a right hand side. The left hand side points to the head of the list the right hand side
points to the tail of the list. And for the second cons pair head and c and the tail is
empty list. So the list containing bc is stored as cons b cons c nil essentially. So with
that definition we can now write this append which says that if you can append x to
y to give you z then you can append something preceding x so cons something lets
call it a x with the same y to give you what you originally got preceded by the same
a essentially. So cons a z. this is obviously a true formula because what | am saying
here is for example if | have this one append lets say 1 comma 2 comma 5 comma 6
gives me 1 comma 2 comma 5 comma 6 this means that if | were to put anything
before 1 in the first list. So lets say 8 then this would also be true. 8 comma 1
comma 2 5 comma 6 8 comma 1 comma 2 comma 5 comma 6. So that is my
second formula. So | have two formulae here. First formula says that if you take an
empty list and append it to something you will get that. The second formula says
that if you can append x with y to give you z then if you had something before x if
you had sort of cons something to x which is in this example the element 8 so |
have added 8 to the list 1 2 solget8 1 2 then all | had to do was to add 8 to the
resulting list that | had got in the previous time itwas 12 5 6 now | simply say 8 1 2
56.

Now this is obviously a true formula you can look at it and see that it is true. The
interesting thing about using logic is that this is a program

(Refer Slide Time: 22:35)

Edit Vi Actions Toak ip
ARl P @ - [IH -2 - P EEEEEEN L hid

PROGRAMMING Py JAL
E?[W{c »—@7/%://»«1{%% g: [P ,,,,j[_f;x bA)
y
dosonpTon, (tho b o bsl)~4A3
oyt UMW syrod. SCHEMA
Coppand, (A, MZJMS

wnote ([20) (e) [abeA)) Timg
spred ([be) (ad) [abed]) fot

[cows pare mditom

QW[/M(} ik .>>(I>

2. opend (H,77,°2) =

pppird [oo (70,70) 7Y o (D) Crs (heel T4l
aped [(12 [5,6) [1,2)5)¢ b &w[b)m(c,m())
opped ((2,0,0) (00 (80,290, " 5

To append two list and this kind of programs are called logic programs. And this
whole approach to programming is called logic programming. And it was shown by
Robert Kowalski who worked in Imperial College London this is around 1970
something. He showed that logic and theorem proving or reasoning can be seen as
a exercise in programing and in fact it can be seen as a programming language.
And between him and Colmerauer who was working in France they devised a
language Prolog which is a commonly used language. Now lets say how this can be
used to as a logic program. So lets try and append two lists to do that.

So in the style of Prolog we will write the consequent followed by antecedent. And
we will assume that we are working with only one type of formulae in which the
consequent is atomic and the antecedent is the conjunct of atomic formulae. So you
can say A and B and C implies D and things like that. On the antecedent side you
can have many formulae on the consequent side you are allowed only one. And a
little bit later in the course we will see why that is the case. Why do we make this
restriction. Its basically for computational reasons it turns out to be more efficient.
So we will write our logic rules in this format now. So the first one is as before there
is no antecedent there. So it is just a simple formula. Append nil to something | will
get the thing back. The second one | will write the consequent first and those of you
who have used Prolog will see that there is a similarly in the way we are writing
things here.

So | am using the arrow symbol here just to distinguish from the earlier one. It's the
same rule | am just rewriting it. and let us say that our goal now is its an existential
goal that is this formula true. Append this is a. so instead of giving the third
argument | have said can | find the value for the variable r such that the append

formula will become true. So logically that’s the question | am asking can | find a
substitution which will make this formula a true formula. And the only way | can
make a formula true is by either the first clause or second clause. It should either
match the first clause or if it matches the head of the second clause. So this we
would call as the head and this we will call as the body. If you can match the head
then you can move to the body.

We will come back to this terminology in the next class. | just want to finish this
example now. So what do we do. We call our good old unification algorithm and we
say that can you unify this with anything in knowledge base and knowledge base
contains these two and we when you say unify we basically mean to the left hand
side. Either the fact or the head of the statement. So you cant unify this with 1
because 1 says that append nil with something and you cannot unify nil with list
called this is. Now remember that this list this is stored as cons this cons is nil. This
notation this. Cons pair notation because that allows recursion to take place more
easily. Now we can match this with the second clause. So matches 2 and the
substitution is that a is this. If | put a as this may be keep searching them as | do
that. Then x is equal to cons is nil. So that's the second thing | managed to match. |
will bother to match the second part which is that of y so we will just write that y is
equal to a list. You can write in cons pair it doesn’t really matter. Then we will say
that lets say z matches cons is sorry. So we will rename z as z1 for some reasons
just to make life simple for us and we will say that this variable r now matches cons
a we have already said is this z1.

So what have | done | have matched this variable with r with this whole thing here
and | have just renamed z on the way here. So you should go back and verify that
yes you should match this formula with the consequent and therefore according to
the backward chaining rule we get a subgoal which is append | am left with only is
which | will write now a cons is nil. With a list. | will just write this and now since we
have replaced it | will call this z1. So we have a new goal now. That append cons is
nil with z1. And | will leave this as a small exercise for you to show that the next
subgoal from this is so we have in the second rule you can see cons a x and in our
goal we have cons is comma nil. So a will match is and x will match nil. And likewise
instead of z1 we can have z2 like that. But | will get a new goal which is append now
is will go just in the first call this vanishes from the sentence and we will be left with
only the is part. In the second call is will also vanish so | will be left only with the nil
part. And lets say z2. And the thing is that z1 is equal to cons is z2. So you should
verify that with this substitution where z1 is cons z2 eventually boil down to a goal
which says is this formula true. That appending nil with a list called a list will give
you some variable called z2.

(Refer Slide Time: 33:29)

Do Pld AODE = - ([FHL -2 EEEEEEEE EOEN "

: W[m/ N, W
. o (M(]QJ?’(@ = W&Zr?y)-u)
Lfﬂ“[W([ﬁwdn]fﬁwjﬂ@j — Ay O
S MR

| oy =
b V”(i e b0
> th [&n«o[m/m\/) , [a ¢4t) ?21) l:l i%::n oo ozD

MW@ W (md | (o) ZEN) (\292 _ W,[w,l’@

.-"-'
L

P:H?-‘ TEL

Obviously z2 is a variable it will be lead to and then the first clause will match.
Append nil with x1 comma x1. Both x1 will match both a list and z2 will also match
a list. So when you say this equal to this then you can see that as a consequence so
let me write this in a different colour here. This will become a list will come here so
this will become cons is cons a cons list nil. Which in other words its not very clear
here but basically a list which contains a sorry this should be is. Is a list. So we will
get this list which is z1 and when we put this into r we will get r as this is a list. |
think you should work it out as an example. By the time we have finished answering
yes we have two calls with rule number 2. So this is like recursive calls one call to
the base clause which is append nil something. And the end of this we have got this
binding that the variable r is bound to this list called this is a list. So in effect we
have ended up appending two lists. So we try to show that a certain formula is true.
But in the process we said yes the formula can be true provided r is bound to a list
which reads like this is a list.

(Refer Slide Time: 35:38)

j H»P 1 '-'[1'9 R VAR A e EEEEEEE i m -

W@AMM&E W

W(EWMJC“M3@7 i
et ML tooo [G (42) T RN
=

| x =
wh i - Mj
S Yﬂ/(MW [&/%[Mfm/() 9 [ﬂ_ Mj ?2j> jz-/-; gz/l [W | .-,.21

ygfsrf’“@ W (md | (» m}\jzz) :W[w,w)%@

=
=

Nr EL \/ _—'——/———_’—T"}(v’
M

Which is indeed the list you get by appending the two inputs. So this logic program
can be used to append two lists. The interesting thing about logic programming is
that | gave a third argument to the logic programming | could have given the
second argument to the variable. Or the first argument as the variable and the
system would still work. In that sense its more flexible. We will take up this point
and may be we will revisit this example or in a slightly different avatar we will see
this example or something which is similar but not quite the same. And see how
logic programming allows us flexibility of uncovering relations between things. So
this append predicate basically this time a relation between three lists. Its saying
when is the first list appended to the second list equal to the third list. This is the
relation we are defining by these two formulae. And what Kowalski and his group
showed was that such logic sentences can be treated as a logic program. And infact
prolog is a language which does that and we will spend the next few classes looking
at how do you express things using prolog and what is the restrictions and so on. Ok
so we will stop here.

