
Artificial Intelligence:

Representation: Resource Description Framework (RDF)

Prof. Deepak Khemani

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Module – 04

Lecture - 05

Okay so we are continuing with our study of representation. And we have said that
what logicians and mathematicians tend to do is to choose adhoc predicates. Now this
is fine provided you are a mathematician or logician who is interested in algorithms for
proving things and showing whether your proof procedure is good or bad that kind of
stuff. But its not very convenient from the knowledge representation perspective. If
you are a knowledge engineer trying to represent knowledge in some domain then the
more the number of predicates you have, the more the number of rules that you need
to have. So for example we have said all men are mortals. So man is a choice of
predicate name and mortal is a choice of predicate name and then we have to
establish some association between man and being mortal. Supposing I said all
women are mortal or all humans are mortal, all babies are mortal, all cats are mortal.
For every such choice I would have had to introduce such rules because if you have to
make any useful inferences I must have predicate which link a given category to
certain property essentially.

So the more the predicate we choose the more the number of properties we will have.
And the more the number of rules we will require. Further we run into problems which
we can illustrate by looking into some examples. Let us say that we want to say that
May hit Peter. Let us say we just want to represent this. And we will see gradually that
talking about actions is also introduce a degree of complexity into the whole process.
We will try to see how to make that a neat process. So what’s the simplest way of
representing this? Is that as I said if you were a mathematician or a logician, you will
say okay I will represent this using a predicate called Hit and I will say that the first
argument is the person who is hitting and the second argument is the person who is
being hit.

So observe that our understanding of what this predicate, the binary predicate that we
have introduced means, as an implicit understanding of the fact that Mary is the Agent
or you might say Subject if you are talking in terms of natural language processing and
Peter is an object. It is implicit in our representation that when I say Hit Mary Peter,
Mary is the person who is doing the hitting and Peter is the one who is getting it. Its
not obvious at all, it is just a convention between us that we understand that. And you
can see that in natural language processing there are ways to get around this
problem. So you can identify who is the doer and who is the object and so on and so
forth. For example in English language in active sentences you always start with the
agent. So Mary hit Peter you say. You don’t say Peter was hit by Mary, thats a passive
sentence. So the grammar tells us who is the agent and who is the object things like
that. We need to make such things clear essentially.

So thats one problem. There is an implicit understanding that we require. And we have
already said that the semantics of such statement says that there is something called

a binary relation called Hit in the domain which corresponds to two elements which we
understand by saying that one of them has hit the other person. But what if I wanted
to say this Mary hit Peter with a stick. Now suddenly things have changed a little bit.
So again if you were not particularly concerned about how efficient is your
representation and you know things like that you might say something like this, Hit
Mary Peter stick. I mean if you are just being very adhoc you might say something like
this.

If you are a little bit more careful you might say something like this. There exists a x
stick x and Hit.

(Refer Slide Time: 05:16)

 so you might say this. Both of them might be acceptable to various people. See it
really depends on what you want to do with the representation. We is the kind of
inference that you want to make. How do you want to use the knowledge that you are
representing. But already you see that you have now two predicates, one is a
predicate of arity 2 which says Hit Mary Peter and other is a predicate of arity 3 which
says Hit Mary Peter with some object essentially. Now you have to first of all remember
what the meaning of first argument is. And secondly if you want to create a knowledge
base what will you store essentially.

So for example you might want to store facts like this essentially. For all x for all y for
all z, Hit x y z implies Hit x y. You might end up wanting to create rules like this.
Depending on what is the purpose. You may want to ask the question who did Mary
hit? I may first have to produce the predicate which is a binary predicate Hit x y and
then see that okay I can match this predicate with this one and through the process of
chaining I can arrive at the answer.

(Refer Slide Time: 07:44)

Now there could be more complications. I could say Mary hit Peter with a stick in the
park. Now will you introduce predicate with arity 4 now? And what if I say in the park
yesterday. Then will you introduce a predicate with arity 5? so you can see that
adhocism will not take you very far if you want to represent knowledge in a general
sense which is useful in many places. So enter our process of Reification. We say that
we can tackle this as something like follows: we can say that Hit is a type of lets call it
event, we will talk about event may be next class or something like that. And we can
identify that we are talking about a particular instance of Hit essentially. We can say
things like this instance h21, thats just a name I am using of type Hit.

So this statement you can read as h21 is an instance of Hit. Which I already defined as
a type of event and I am saying h21 is an instance of that. But now you can see we
can add more information in a modular fashion. We can say agent of h21 is Mary. We
can say object h21 is Peter. We can say instrument of h21 is lets say stick21 without
worrying too much about how I am talking about the stick. Venue h21 is whatever,
“the park”, however we represent that. We will see shortly that you can instead of
having the single entity “the park” you can point to something else, which is a
structure is something that we are arriving at essentially and so on and so forth
essentially.

So what is striking about this kind of a representation? The first thing is that its
modular. That you don’t have to introduce a new predicate of different arity for
whenever you add some more information to the event. So Mary hit Peter, Mary hit
Peter yesterday. Mary hit Peter with a stick you know these two would be two different
predicates of arity 3 and so on. So you dont have to do all that kind of stuff. There is
some degree of Uniformity which has come into here. So I have written this in a
particular notation. You could have written it as follows. Instance, it doesn’t matter. You
could have written it in a more logic-like notation but then but that decides the point
essentially.

What is interesting about this is that if you look at this then all have two arguments
and in this notation you can see that each list has three elements.

(Refer Slide Time: 13:08)

a little bit later, see whenever we talk about knowledge representation and logical
reasoning essentially our task is to connect different predicates which are related to
each other in some way essentially. So here you can see that all these five predicates
that we have written, instance, agent, object, instrument and venue are related to
each other in the sense they correspond to the same event. So they are connected by
this particular symbol h21 essentially. So we can trace. We can say who got hit in this
event? Who was the person who was hit? All these questions we can do through this
process of chaining through these kinds of facts essentially.

We have seen forward chaining and we have seen that whenever you want to do
chaining, essentially you have a lot of rules and you have a lot of facts and there is the
problem of matching. So essentially boils down to searching of the rules and the facts
which may mean extra work. Which may add to the complexity of the reasoning
process. So it is possible that we may want to put all these things together into a
structure. So you are all familiar with object oriented programming and the notion of
structure in C. We could do something like that. So we could say event h21, instance
of Hit, agent Mary, object Peter and so on. We could have one compound or composite
structure to represent all these different facts essentially. This is an idea that we will
explore later and its an idea which is called as Frames which you will explore in later
class essentially. And the idea of Frames is to keep all these information together so
that its easily accessible, you don’t have to search for the matching facts and
things like that.

(Refer Slide Time: 15:19)

Right now we want to focus on this part. It has 3 elements and this has become a very
attractive thing. And these kind of things are known as triples because they are made
up of three elements. And they have become very popular nowadays because of the
emergence of the web essentially. Now you all know that you can buy a book from
some store or CD from store or something from online store. Your program which
enables this transaction has to access someone else's database. So Amazon may have
books, flipkart may have a set of books or infibeam may have some books. All these,
each seller stores database of books and you want to access those books. So the basic
idea is that data has become distributed. When i say data you can say facts as far as
logic is concerned. They are getting distributed over the web. And what has come out
is a language which is called RDF which stands for Resource Description Framework.
And it has become standard for representation on web.

I will strongly urge you to go to this, so it is the standard of the w3c consortium. So
you should go to, just search for a tutorial on RDF and you will probably be taken to
one of w3c sites. And they have their schools essentially. They have tutorials on
everything you need for web based programming. An RDF has emerged as a important
tool for web based representation. And RDF we also associate the word with as triple
store. Everything you express in RDF is in terms of triple essentially. And they are or all
facts are broken down into statements which have free objects and the kind of triples
that we are talking about is Subject Predicate Object. Or some people say Subject
Property Value

(Refer Slide Time: 19:22)

so an RDF is a language which sort of constrains you to describe everything in the
world in terms of these three values. So lets take an example. I am not going to the
syntax and technical details of RDF you should go and read the tutorial. I will just give
you some idea of what’s happening here. Lets say you have a relational table, its you
were not working on the web, if you had a large lets say physical store, you might
have created a table like this for whatever products you have essentially. So this table
may have certain, so lets say this table has books essentially, so when you talk about
books, you can say Name, Author, Publisher, Edition, Pages, Year and so on. So you will
have many columns in your database table. And for every book you have in your store
you would have all this information available which is very nice if you can store
everything in one place. But now if there are many sellers and if they all want to talk
to each other and they want to talk to buyers and so on and so forth, we have to have
a mechanism for representing this information in some uniform fashion which is
accessible to everybody.

And one question that arises is that what is the name of the property that, we will
assume that somehow we will arrive at consensus on the names of property. So if you
are talking about a particular row in the table, you are talking about a particular book
and in some sense you are talking about a Subject. And if you are looking at a
particular value, lets say Publisher then you are talking about property or predicate.

(Refer Slide Time: 22:10)

what RDF allow you to do is to represent each cell in this huge table as a separate
entity. But ofcourse we saw the idea of frames and we may want to keep this thing
together and so on and so forth but thats a basic idea essentially. So you remember
this notion of, so lets say this publisher for a particular book is Tata McGraw Hill which
is the old name for McGraw Hill India, because its easier for me to write, you can see
that it is Tata McGraw Hill. Then I could, that cell corresponds to a triple, lets say its
my book on AI, I will abbreviate with AFCAI, and then thats the Subject. And the
predicate is Publisher and the value is TMH or the object is TMH. So every cell in this
entire table will be represented separately as a triple.

So we can view this RDF example as saying that I have a book, lets call it A first course
on AI. You can think of it a node. And then there is a predicate, you can think of it as
an edge. And then there is a value. So this is Publisher. I may have another one for
author for example.

(Refer Slide Time: 24:38)

so a distributed database like this can be seen as a graph essentially, a triple store is
a graph. And now a days people call them as graphical databases. And then they have
their own query languages. For example there is a language called SPARQL so you
should look up the extension of SPARQL. Its an interesting self referential acronym. So
what are there resources? They are anything that can be talked about. So one thing
that we are interested in is Uniqueness of names. And to do that we always identify
resources by what is known as a URI. So earlier we said that instead of saying Mary we
will say mary21, instead of John we will say john33 and so on, just to make sure we are
talking about something specific. But in RDF you are required to use this Uniform
Resource Identifier. URLs are like URLs infact URLs are a type of URIs and typically they
will look like http:// something www. Something. Now RDF is build upon XML which is
an eXtensible Markup Language which has become kind of defacto standard for
representing RDF so you could talk of representing RDF in different ways. And we talk
about, for the perspective of uniqueness we talk about namespaces.

So the idea of namespaces is that it is a resource which defines what is the vocabulary
which is used inside. So for example I may have something like this, the RDF
document may look something like this, I may say that xml version 1.0 or something
and then inside this I will say rdf RDF and I will define a namespace which is defined in
xml, so xml namespace rdf. So this is a namespace, rdf is a namespace.

(Refer Slide Time: 28:34)

I could have defined a namespace another namespace for book. So its just a name of
the namespace and I will say that in my namespace book I have things like author,
title, year and so on. So not only do you need to specify that author refers to author of
the book but you have to say that I am taking this word from a particular namespace
which is called book. So you have to specify where that namespace is. So this may be
for example in some place, somewhere in this website there is this namespace
essentially. And I might say that my namespace is in some place , lets say its in my
lab, AIDB lab. I have defined this namespace.

(Refer Slide Time: 29:49)

so whenever I now talk about book then I mean that the namespace is defined in this
particular website. So thats why URIs are looking like web, infact web addresses are a

particular case of URIs. Because in principle they can be dereferenced essentially that
once you know what the namespace is you know which site is www.iitm.ac.in.AIDB lab
and so on and so forth, it can in principle be dereferenced even if they cannot be
dereferenced. For example if we dont really have such a website it will become a
unique namespace. So thats the advantage that we get out of this. And then so I will
define this, I will define that I have two namespaces here, one is rdf and one is book.
And then lets say that we are talking of books available in our department library or
something like this. Or if we were settling up a shop or something then typically we
would say this .

We are now describing an entity, Description and the first thing you will say is that
when I say rdf:Description it means I am using the word Description which is described
in the rdf namespace. And then I can say that it is rdf:about, so I specify as to what is
it that I am describing. So I can give namespace an address, lets say iitm ..and then
this book. So what follows after this is everything that I want to express about this
rule. So I may say for example book, so book namespace, author . So I can either give
a string or I can point to another resource. So I am describing a resource called this
book which I am using rdf to describe. So thats the subject, the subject is a book,
predicate is this author, and the value is either a string, you can just give a string or
you can point to another resource essentially. So you can see that values or objects, so
if you say subject predicate object, the object can be a resource so you can have you
know big linked graph structures over which you may have to search essentially.

So I dont really want to go into the details of rdf here except the fact that we came to
rdf because we want to have a uniform representation. So instead of having achoc
predicates with arity 3 and 4 and 5 and so on we are now come down to predicates of
arity 2. so we will always talk about subject predicate object or subject property value.
And everything on the web is described using such triples as they are called. And such
stores are also called triple stores. We will come back to logic and in the next class we
will talk a little bit about, when we talk about events like hitting how can we represent
them meaningfully. So we will stop here.

http://www.iitm.ac.in.AIDB/

