
Artificial Intelligence: Rete Algorithm – Example

Prof. Deepak Khemani

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Module – 03

Lecture - 09

 Okay so we are looking at production systems which is a form of forward chaining or forward
reasoning and in particular we are looking at an algorithm called Rete algorithm which uses the rete
net as a structure which is what we were looking at. So what I am going to do is show you an
example of rete network today. But just to make sure as to what we are talking about. So remember
that in production systems the basic idea is that we have a three phase cycle, we have match phase.
What the match phase does is takes rules as input and data or facts as input and it produces set of
rules which are matching with data and we had called that set as conflict set. And this set is given to
a phase called Resolve which selects a rule from the conflict set which is given to Execute. And
what execute phase does is produces either a positive token or a negative token because we have
said that we are allowed to delete statements from our knowledge base and then these are fed back
into the network.

 (Refer Slide Time: 02:15)

The basic idea of a rete network was that instead of doing this match all the time which we saw was
expensive, we want to do it once in the start and after that any changes in the working memory or
changes in the knowledge base we want to see that what changes are induced in the conflict set. So
we had this notion of working memory so the facts are in working memory, these are called
working memory elements and typically it may look like this. There is a student, so there is a class

name, think of it as an object which comes from certain type, so the student is a certain type and
then you may have attribute and values. So you have attribute called name, you may have an
attribute called marks and so on. Now what the rete algorithm does is you start by entering a
working memory element and then at each node you ask a question which will tell the system what
is the working memory about essentially.

So for example at the topmost level there might be a question like class name. So for each class that
we have in our knowledge base, so for example student may be here and some other kinds of data
may be there. So if we see a token which is of the type student then it should come in this direction.
Then we may ask some other questions essentially. So for example we may ask something like
marks greater than 60. Then what happens is that whichever are the tokens with marks greater than
60 would go down the left branch and others would go down the right branch. So the top half of the
network we said was a discrimination network. It sort of separates the data and directs it towards the
rules that they are going to match essentially. So these kinds of nodes were alpha nodes.

 (Refer Slide Time: 5:02)

and then there were beta nodes which basically pulled in data that a rule requires and essentially
supplies it to a rule and says this rule has matching data, so that’s what we had looked at in the last
class. So today we will look at an example first and depending on how much time we have we will
look at the language itself in a little bit more detail and what it allows us to do essentially. So i have
sort of copied from my book some example so I won’t write it all over again. So we will essentially
discuss it with a pre written piece of data.

 (Refer Slide Time: 5:53)

So, let’s say we want to write a small program to recognise or classify geometric shapes. So we may
have things like pyramids or cylinders or wands or domes, let’s say we have four kinds of language
which are described using certain attributes and values and given our knowledge base we want to
identify how many, which van we have, which pyramid we have, such kind of stuff essentially. So
for example a rule for identifying a van as you can see in this red says that every block has a name
so we want to classify a block, block a is a van, block b is a cylinder and things like that. The rule
for van says that the base of the block must be circular with the area of size 1 some units. The side
of the block is curved with tapering with colour black. The top of the block is pointed. If we have a
block of this kind, then call it a wand.

So let us say we have these four rules. So there is rule, so here are two on the next page, so there is
this rule called green pyramid rule so we are talking about green pyramid actually. Now the first,
each of these things that we see here these are the four patterns that this rule is looking for, these are
the antecedents of the rule essentially. And each of these patterns is describing some working
memory elements which starts with the class name. So we have class names like block and base and
side and top. And then the attributes and values. So remember that the thing with the hat is the
attribute name and following that is a value essentially. And remember that something like this is a
variable.

 (Refer Slide Time: 8:20)

so this is the variable, anything in the angular brackets is a variable. So the first rule says that i must
have in my knowledge base one working memory element. So these are working memory so this is
working memory pattern1, and so on whose type is block and it has an attribute called name which
has some value x. Then the remaining three patterns must have somewhere the same value x. So
wherever we repeat this x they must have the same value. So that’s the whole idea of sharing a
variable. Then the second pattern says that the type of the working memory element is base and it is
we are talking about a block whose name is x, we are not talking about naming it x but the attribute
name is block whose shape is square. Now this square is the constant, it’s not a variable because it
does not come under angular brackets. And then we are allowed to do things like logical tests whose
area is greater than 1 essentially. The side of the block has angle less than 90. the surface is plain
and the colour is green

 (Refer Slide Time: 10:00)

The top of the block is pointed essentially. So all these conditions are satisfied then we say that we
have a pyramid. The right side of this is a action so we are saying we make the class block x type b
essentially. So we are not really bothered about the right hand side here. So may be in next class we
can see what is the kinds of actions that we can do.

So likewise the second goal says which is a cylinder goal which identifies the cylinder. So the three
things, the second, third and the fourth patterns I got. Second pattern says that its base is circle. And
area must be greater than one. The third pattern says that the side must be of the angle 90 degrees
and the surface must be curved. And the last pattern says that the top must be, the surface must be
flat as opposed to the point which was the case for the pyramic and the wand essentially. So i want
to show how, i will show you two more rules and how those four rules what is the rete network that
we construct. So the rete network is basically a compilation of rules, it has nothing to do with data.
The moment you have decided a set of rules, then you have a rete network. And that’s why Simon
they called it long term memory. It is kind of the knowledge that problem solving agent has.

 (Refer Slide Time: 11:35)

so the third and the fourth rule are the wand rule and the dome rule. I have coloured the wand rule
in red because when I show you the network you should look out for the fact that these four patterns
that are needed for this rule to match. What are the paths they will take in the network essentially?
So those paths I will show in red. So you must remember what the wand rule is and then we will see
how it is chosen up in the network essentially. So the wand rule is similar. The first rule in all these
four rules simply says that we have a block called some name essentially, just identifying the block.

 (Refer Slide Time: 12:19)

The second rule says that shape is a circle and area is 1. The third pattern says that angle is less than
90, surface is curved and the colour is black so let’s say wands are always black. And the last one
says that the surface is a point.

So likewise we have a dome rule. You might have seen the Sanchi Stupa and something like that. It
says that the base is a circle with area greater than 1. The side starts with an angle of 90 and the
surface is curved. And the top is a spherical surface essentially. So that’s something we would call
as a dome.

So we construct Rete net for the rules above. So this is basically, I have just copied from my book.
Now the important thing is that there is no unique Rete net corresponding to a set of rules. Because
essentially what you want to do is to test for various conditions and you could test in any particular
order. The goal that we would have is to minimise the number of tests and to make as smaller
network as possible essentially. So you could choose any test in any order and construct different
networks and you could also combine beta networks in any order because you know each of the
rules we saw had four patterns, you could combine 1 and 2 and then 3 and 4 and then combine
patterns in any particular order.

So the objective would be to share as much as tests essentially. So if the different rules are testing
for the same thing, in our case for example the first pattern is always the same so you must, so for
every working memory element you must apply the test only once.

 (Refer Slide Time: 14:42)

So once you construct the network we will also insert these working memory elements into the
network to see how it works. So the working memory elements or the data, so each of them is like a
record in the database you might say essentially. The first one says I am talking about a block such
that base of block A is shape square and area is 20. Base of block B is circle and area is 20 and so
on and so forth. We want to see that given this data which of the four rules match essentially. That’s
our main interest at this moment. So the numbers on the left that you see here, these numbers, these
are timestamps and we will see later in another class that timestamps can be used in deciding what
is the problem solving strategy that you are using essentially. Otherwise they are of no interest to us

at this moment essentially.

 (Refer Slide Time: 15:48)

so the numbers on the left are regency numbers which is what this community calls it, stating the
order in which these working memory elements were created. They are used to identify the working
memory elements in the Rete net. So we will identify in the diagram that we will draw each such
element by its recency or timestamp so that we don’t have to write the full thing there. And we will
see that some tokens will get combined in beta nodes. And then finally we will see in the network
that there are two rules which are matching with this data. So here is the network.

 (Refer Slide Time: 16:52)

This is legible or should I enlarge it a bit more. This is fine. So you can see from the top, the root is
where the token comes in and the red lines are the ones which will match, which basically show you

what are the patterns that we are looking for, the wand rule. So it needs four patterns and these all
four are of different types. So you can see here that the type of class is, here the class is a base, here
the class is a side, here the class is a block and here the class is a top.

 (Refer Slide Time: 17:34)

So straightaway we can see that tokens of different classes will go down different paths of the tree
essentially. And then we have tests like, so if you look at this class is equal to side part here, you can
see that there is a test which is angle is less than 90 and angle is equal to 90. Now how did we arrive
at this test. We arrived by looking at the four rules, there were four rules, some of them wanted
angle equal to 90 and some of them angle less than 90 and so we have only these two tests
essentially. If there were other rules stating that for example if there was a block which said that the
angle was 45 then we would have a third branch essentially. So this network is created by looking at
the rules essentially. So it’s a compilation of the rules in some sense. So for each thing we have, you
know you go down you have another test, you go down you have another test and then the blue
nodes if you see here these are the beta nodes essentially.

 (Refer Slide Time: 18:45)

so they are accepting two tokens and combining back together essentially. So the number which you
see in grey for example this number 7.

 (Refer Slide Time: 19:06)

refers to the working memory element numbered 7 and it has come up to this point and it is not able
to go down any further because it is probably looking for, to go down further to this beta node here
it needs a matching element to come from the other side, from the other branch. And only when the
matching element comes will this working memory element which is stuck here at this place go
down to this circle node here and then we will have the combined pair of tokens essentially and this
process will continue. So essentially when four tokens come and meet at a point because in our
example each node has four patterns so once four tokens arrive then a rule would be ready to fire
essentially.

So which is happening as you can see, so just look at the wand rule. I wonder whether you
remember the wand rule but essentially these red lines are the wand rules. So area is 1, base the
shape is circle, so the area of base is 1 and shape of base is circle so this branch that you see is
talking about the base essentially and it is a block whose name is x. So this x is essentially we are
using simply to say that we are talking about the same block. So if there is a block named a then it
can only combine with another block named a which is coming from a different direction. That x is
equal to x must match. That’s what this beta node is doing, that if there are two variables which
have the same name in the two branches then they must match the same value essentially. So the
wand rule will have that.

Then another thing is angle of side is less than 90 the surface is curved the colour is black and of
course the block has a name which must match the other. There are two more patterns which are
coming, one is the class is a block whose name is x, this is the simplest pattern which is there is all
the four. And the fourth pattern is that the top of the wand rule, the surface is a point essentially. So
that’s the only thing essentially. If you see that four red things they first meet at these two nodes.

 (Refer Slide Time: 21:30)

To form pairs of two tokens and finally they meet at this node to say that the rule is matching. Now
as it happens with this particular data we don’t have four matching working memory elements. But
we have for the green Pyramid rule as you can see here there are four elements. So x is equal to a.
In all those four working memory elements if you were to look at the working memory elements
1,5, 6 and 11. their name is A, they are talking about a block which is A. And all the test that the
pyramid rules says that the side is sloping and must be green and all those tests are satisfied. So the
four token arrived here and now they have formed this token and this rule has now gone into the
conflict set essentially.

 (Refer Slide Time: 22:27)

this means it is ready to fire essentially. Likewise, we have another rule, cylinder rule which has got
four pieces of data which is number 2, 9 10 and 12 for that x is equal to B. And all the conditions
for a cylinder, the base is circular, the side is perpendicular or the angle is 90 degrees and the side
surface is curved and the top is flat. All those conditions are met by those four things so we have
these four things which come down to the conflict set. Now once you start the process for all the
data you would produce a conflict set. What is a conflict set? A conflict set is a rule name, in this
example the rule name is greenPyramid rule and the four pieces of data which is 11 16, so this pair
of rule name along with matching data will go into the conflict set.

Now it may be possible in your database to be having more than one greenPyramid and there might
have been more than one cylinder in which case you will have two instances of the same rule which
is firing essentially. So this is the basic idea behind the Rete net is that the top half separates the
data and the bottom half assimilates what you need for a rule to fire essentially.

Now as i said Rule Based systems have been used extensively in what we sometimes call as or used
to call in the expert system, now we just call them computer system. So one of the first such so
called expert system was a system called XCON also called as R1 and it was a system which was
used to configure DEC PDP systems. So essentially in those days’ computers were not like PCs now
a days. You cannot just go and say ok i want to buy a Macbook Pro or something like that. You had
to practically configure the whole thing, you know piece by piece. It required a considerable
amount of expertise and individuals ofcourse did not buy machines, it was basically organisations
which bought machines.

So here is an example of a rule which is used by XCON. So this XCON was a forward chaining
expert system essentially. It uses the Rete network based software to implement the rules and this
rule as you can see is a english translation of an XCON rule and I have taken it from a book by
Jackson called Expert Systems published in 1986. That was the time when expert systems were very
popular. The idea behind expert systems was that you want to catch a domain expert and extract the
domain experts knowledge and put it in the form of rules into the system essentially. And this whole
process is called knowledge acquisition. And they had whole kind of protocols for how to do it. You
know you would say this is how you interview an expert and so on and so forth. So this is a system
to configure computer systems but there were other very popular systems called Prospective, so you
must look this up on the web or something. Which was used to find places to drill for oil or

minerals or something like that essentially.

Now drilling for oil is a very expensive proposition, to drill a hole costs lots of money essentially.
So if you want to drill a hole then you better do it at a place where there is a good chance to get oil
essentially. And Prospective was an expert system which was also build around these lines, to
explore for geological explorations essentially. And the good thing about these things is that even if
they sort of save you from one bad drill or point you to one good drill then they have kind of paid
for themselves essentially. Developing is done by a few people over a period of time.

There was another system called Mycin this was also very famous which was used to diagnose
pulmonary diseases. So essentially the idea there would be to catch a doctor who is an expert and
find out okay what are the symptoms which point to this and so on and so forth. So the whole idea
of rule based expert system was to get the knowledge from experts and then put it into the system
and we will see in the next class how it is really operated. We have looked at the match part as of
now we have not looked at the resolve part which is really another key to this whole thing
essentially. So these rules say that I will just read it out if it makes sense to you.

 (Refer Slide Time: 27:30)

The most current active context, so you are trying to structure your rules into a context. So for
example initially you might do something so if you are building a house for example, you might say
ok you want to first build the basement or the foundation, then you have to build the walls then you
have to build the doors and the windows and then you have to build the roof. Each of them is a
separate context and essentially you would want rules which are relevant to the context only to
come into contention. And that is done by explicitly saying that it is a context. The context is
building foundation or building wall or this thing and you would set the context as part of the
program running. It should say ok now the context is to build the foundation then after that is
finished some other rule will change the context. Now it would say change the context to building
walls or something like that and all the rules which were in the context of building walls they would
come into the match into the conflict set. So this is just to make the whole process a little but
efficient.

Then there is a single port disc that has not been assigned to a massbus, there is no unassigned dual
port disk drives and so on and so forth. There are set of conditions as you can see about 6 conditions

are there and then you say that assign a disk drive to the massbus. And XCON or R1 was full of
such rules.

So the high level task breakup so even that follows an algorithm at a certain level of detail and we
saw that the algorithm is controlled by deciding what is the context and things like that. So the high
level task breakup of XCON is as follows. You check the order, inserting any omissions and
correcting any mistakes. Configure the CPU, arranging components in the CPU and the CPU
expansion cabinets. Configure the unibus modules, putting boxes into expansion and this thing. So
this is how XCON was designed to configure a system, so those of us that do the second step, do the
third step you can say that it is very high level things like an algorithm. And it’s a very generic
algorithm it is not precise enough to say what is to be done.

What XCON contains is XCON fills in the low level details of the above algorithm by selecting and
firing specific rules. So i have taken this example from my book and there of course I have taken
one example from Jackson's book essentially.

So in the next class we will try to look at what is the language, we have not really specified the
language, we have vaguely said there is working memory and there are rules. In the next class we
will look at language and some of the issues which go into building such systems essentially.

