
Artificial Intelligence: Knowledge Representation and Reasoning

Prof. Deepak Khemani

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Module – 03

Lecture - 07

So in the last class we looked at unification, today we want to look at forward chaining again. So
remember that we had looked at this modified modus ponens which was like modus ponens except
that it uses unification because one may have variables inside the statements essentially so
unification is used to make them same and then you can use the modified modus ponens rule
essentially. So this modified modus ponens plus unification actually gives us a mechanism for be
able to reason. Now let’s focus on the task on reasoning itself as to which inferences to make
essentially. Of the many possible inferences that you can make which is the one that you want to
make. Now before we do that I just want to make a comment that as far as the knowledge
representation part goes the community which looks at this algorithm or the mathematically
inclined committee or the logicians, logic committee they do not focus on how you are representing
things essentially so that’s why we use variable names like predicate names like P, Q, R. We don’t
particularly care what is the variable that we are using. So in some sense we are using adhoc
predicates. We are giving thought to whether these are the predicates which are the best ones to try
to describe the domain that we are trying to describe and so on and so forth. We will come back to
knowledge representation at a later time. We want to focus now on the reasoning part which is the
algorithms.

 (Refer Slide Time: 02:37)

So the reasoning part is concerned with algorithms and we essentially want to focus on what is the
algorithm. Now what is the reasoning algorithm. We are given some knowledge base. We will use
the term KB as usual for knowledge base and a goal or we can call it a query alpha. The question
we are asking is does the knowledge base entail alpha and then we are translating this question to a
different question. So now we have gone past the semantics to does the knowledge base derive
alpha.

 (Refer Slide Time: 03:50)

So if you try to imagine what is the situation right here pictorially you might say this is the
knowledge base. And it contains many statements. So as far as the abstract representation or the
logical representation is concerned we are not making any statements about how these things are
stored, how they are retrieved and any such things.

 (Refer Slide Time: 04:13)

So we just have a collection or set of statements and then we have a collection of rules. In our case
we have one rule which is modus ponens, modified modus ponens but we could have more rules it
doesn’t matter and we are given a query alpha and we are asked whether this alpha is true or not
essentially and we want to generate a proof essentially. What is a proof? A proof is a sequence of
conclusions, at the end of it, the last conclusion is alpha essentially. So that’s the direct proof or the
forward chaining method that we are looking at essentially. So somehow from this sea of formulae
we have to pick the right rule, apply it to right facts and generate some new things essentially. So
for example we may pick this and we may pick this and we may add another thing to the knowledge
base, then we may pick this and then we may pick this and we add another thing to the knowledge
base and so on. We keep adding more things the knowledge base expands and at some point
hopefully we will add this alpha essentially.

 (Refer Slide Time: 05:26)

Now if you look at the two student communities, the logic community or the mathematics
community, so a logician will simply say a proof exists. Or they might even produce a proof
essentially. So they don’t tell you have they arrived at the proof. They will say here is the proof, so
your task is now to simply validate or verify that the proof is correct or wrong. So you check
whether every inference is sound and if that’s the case then you will accept the proof essentially.
But as a computer scientist which I presume all of us are, our task is to find the proof.

 (Refer Slide Time: 06:28)

The logician or mathematician does not give you the process by which he or she arrived at the
proof. Whereas when are writing programs to write the proofs then that becomes our primary goal
essentially. How do we find the proof essentially? So this exercise I might have mentioned is called
theorem proving. So we use the term theorem to stand for any proof statements essentially because
that’s what mathematics says that once you prove something it becomes a theorem or lemma. And

the task of theorem proving is to find an algorithm which will find a proof essentially. It may be
more than one so you can at least find one. So the question of course is how. And the answer to that
is some kind of search.

So at a high level we have already said that the algorithm is as follows. Pick a rule with matching
data, antecedent is left hand side of the rule, so if something, that something is the antecedent. So if
you can find the rule which has those parts present in the knowledge base, then we add consequent
to knowledge base. So antecedents are in the knowledge base.

 (Refer Slide Time: 08:30)

So in this way we keep adding more and more statements to our knowledge base and reach, we will
terminate when we have added the statement we are interested in, the thing we call alpha. So the
question is what kind of search can one employ so what do we employ. We have a a set of rules in
which we have one or more rules and we tend to distinguish between two kinds of things, one
which we say are facts and other are rules. This is just a distinction that that we use from the point
of view of revising algorithms, both are statements in logic but you distinguish between facts and
rules.

 (Refer Slide Time: 09:33)

So fact for example can be Man Socrates and the rule can be like for all x Man x implies Mortal.
So i will just use m here. So we distinguish between these two kinds. So essentially what modus
ponens which is one inference rule which are using has access to a large collection of rules like
things all men are mortal, all student are bright or all bright students are girls and things like that.
So whatever statements we have we will call them rules and whatever facts we have is the actual
data in the knowledge base. Socrates is a man, Shrestha is a student, Shreshta is a girl, so such kinds
of statement is a fact. So modus ponens is trying to pick a rule essentially. So when we say rule
here, it’s a statement, that’s a statement that I mean here.

 (Refer Slide Time: 10:34)

These are also statements in first order logic, there is a slight confusion between rule of inference
and rule here. Rule of inference is modus ponens or modified modus ponens, it’s a metalevel thing.

Rules in a language is basically universally quantified statement like this statement, all x are y,
things like that essentially. So the algorithm now needs to wait through all the rules and all the facts,
to find something which is a matching piece of rule. A statement which is a rule and a matching
statement which is a fact essentially. Now you can see that if you have a large knowledge base, then
the choices that you have will be in proportion to the number of facts we have and the number of
rules that we have. So it’s a problem which is going to increase combinatorially in terms of
complexity so that’s one of the main issues that we want to attend.

 (Refer Slide Time: 11:43)

so what are the kind of search algorithms that we can think of. One is, of course the simplest search
is linear search or sequential search. This simply says, take the first rule, apply it to the first set of
data, try to match it with the second piece of data and so on and so forth. So you take the rules one
by one, then you match them with data one by one, so you keep doing that. We will come to this
later essentially. This kind of an approach is used in a language Prolog.

 (Refer Slide Time: 12:50)

And then when we come this you will see that because we are using an algorithm which is
sequential search, the onus will be on the person who is writing the knowledge base or who is
writing the rules, to put them in certain order such that the algorithm will find the solution quickly
essentially. We will come to Prolog, which is actually a process of backward chaining as opposed to
forward chaining that we are looking at, and Prolog uses sequential search so will come to that a
little bit later. So today we want to see how forward chaining can be made more efficient essentially.
So we want to try to look at that aspect.

So what is forward chaining essentially is the process that we are saying. Look for a rule, look for
matching data, add the consequent and then keep doing this. Now let’s assume that rules are given
to us in a particular format which is, so when I say rules, I mean rules which are also statements in a
language, statements of kind
If antecedent1 antecedent2 antecedentN, let’s say there are N conditions on the left hand side, then
consequent.

 (Refer Slide Time: 14:50)

So we are given a collection of such rules, so when you look at all these rules we will have a set of
patterns essentially. So the patterns that we are trying to match are the left hand side of the rules. We
are trying to see whether there is some element in the knowledge base which matches antecedent1,
some element which matches antecedent2 and so on and so forth. And we are given a set of rules so
let us say that our knowledge base looks like this, a11 so a11 I will use as a notation to stand for
rule 1 and antecedent1. But I may have other things, so I may have antecedent12 and so on, a1N..so
these are the N antecedents that I am talking about. Then I will have a21 and so on a2R, let’s say it
has R antecedents and so on and so forth. So for every rule I will have a certain number of
antecedents. So i will have a list of patterns that I am trying to match essentially. And what am I
trying to match.

 (Refer Slide Time: 16:30)

So I am trying to match facts. So let’s say simply facts are some statements, data point 1, data point

2, data point 3, some number of data points essentially. In the terminology that soon we will look at
of forward chaining algorithms that you will see these facts are also called working memory
elements. The facts are essentially called working memory and each of those data items is also
called working memory elements. So what is the task. The task is you try to match a11 with d1, you
try to match a11 with d2, a11 with d3 and so on so forth.

 (Refer Slide Time: 17:49)

So you can say that the total number of matches that we will have is the if we have N antecedents
on an average, let’s say we have R rules and D data element, then we will end up matching every
antecedent with every data element so N into R into D matches. So this scenario is a little bit
different than what I started by saying. What I started by saying is pick a rule with matching data
but now what I have moved to slightly different way of doing things which is the method that is
used in what we call as production systems or rule based systems. In the 1980s they would be called
expert systems.

 (Refer Slide Time: 19:15)

And what a production system does is that it has something which is called a an inference engine.
This is a terminology with this particular community. Inference engine is simply an algorithm that
we are talking about which says that add a matching rule, add the consequent and so on and so
forth. But the difference is that the typical forward chaining inference engine is made up of three
steps and the first step is Macth and the thing about this is all pairs of the kind some rule ri with
matching data point so d11, d12, ..d1n lets us say. Find all such pairs let me emphasise it. So the
match algorithm essentially says that given a set of facts and given a set of rules, both are the
statements in first order logics, which rules are matching with which data. Produce the whole set for
me and I will choose which one to select. So we are doing a pre-processing of the match essentially.
And this match is what will do this NRD number of matches.

 (Refer Slide Time: 21:00)

Now that we have done all the matches we have a step called RESOLVE which essentially says

choose a pair. Obviously it is very critical as to which one you are choosing. So this element of
resolution. How is, what is the problem solving strategy that we are trying to use as to which rule
you will apply. We will come to this a little bit later. So at the moment I want to focus more on how
to make this process of inferences efficient and the algorithm that we are looking at in essentially
designing to do the match more efficiently.

The third step in this process is execute which is basically the step that we have which is basically
that you add the consequent to the knowledge base or in this terminology to add the consequent to
the working memory essentially. So the same thing we are doing except that we are saying that we
will do all the matchings first then we will decide which one to actually apply. So the match
component will find all the matching rules with the corresponding data. The resolve component will
choose one of them and execute will basically add the consequent essentially. Thats the inference
engine, it’s a three step process, match, resolve, execute and this is put into a loop.

 (Refer Slide Time: 22.51)

So what happens is that it’s the match which is the most expensive part. So there is one small thing
that I want to state before we move on to match. This execute part we have said it is add a
consequent to the knowledge base or working memory and in terms of this notation that we are
using, this consequent is also a working memory element. But in practice one allows, so not only do
we add a consequent, but we are in some sense deviating from the classical logic. We are devising a
language or a system in which we are allowed to delete elements essentially. So just give some
thought to this, what is happening to this whole process essentially. So not only do you add new
facts to the knowledge base which means new rules may be triggered so on and so forth but you are
also allowed to delete facts from the knowledge base. So the consequence of this, what should be
the consequence of this, that is the match has to be done in every cycle. What is the cycle we are
referring to? We are referring to this cycle of match, resolve, execute. The consequence of the fact
that you can delete elements means that something which may have been matching earlier will no
longer be matching now essentially. If you are not allowed to delete elements then we could have a
simple strategy which says that do a match, produce all the elements, all combinations of rule and
matching data, pick one and execute it which means you will add some more facts. Just see as to
those new facts which rules they may trigger so add that to the set that match produces.

 (Refer Slide Time: 27:43)

So the set that match produces a set which looks like this Rule R followed by matching data as I
said di1, di2, din. This is called conflict set, it’s just a terminology and you should be aware of it. A
conflict set is basically a collection of rules and matching data that match algorithm outputs. The
consequence of the fact that we can delete elements is that this conflict set has to be computed every
time essentially. If we were not allowed to delete working memory elements or facts from the
database then once a rule and its matching data is entered the conflict set it will stay there till it is
executed but the fact that we are allowed to delete elements, working memory elements of dataset
means that even if a working memory element or a rule and the combination of data has got in the
conflict set, because we are deleting one of the antecedents, that rule may no longer be applicable
essentially. So it complicates the whole process so in principle we have to match all over again
essentially. And it has been show that match consumes eighty percentage of the computational time
even with optimisations that we will talk about, match part really takes up all the time in the cycle
of match, resolve, executed. Resolved is the most straightforward process and execute is of course
constant time essentially.

So in the next class when we meet we will look at an algorithm which is more efficient, it’s called
the RETE algorithm. So keep in mind that we are working in this match, resolve, execute paradigm
where the execute phase may delete or add data to the knowledge base and we want to basically
make the next round matching process efficient and in doing that what we really want to do is how
much of the match we can carry forward and try to you know do these kind of optimisations
essentially. This is what is done in the RETE algorithm and we will see that in the next class.

 `

