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Okay so we have just defined the semantics of first order logic and now we want to move on to
proof systems in FOL because eventually that’s what we are interested in, writing programs which
can produce truth statements. So the first thing to observe is that all the rules that we have studied
so far, things like modus ponens, they still hold in FOL as well. So we carry forward everything that
we have in propositional logic to first order logic. But what is different in first order logic is that we
have quantifiers, we have predicates and we want to talk about how to handle those. Now the first
thing to observe is that these quantifiers are essentially short forms. So when I say something like,
okay so let me first state this. So if I were to make a statement like for all x Px where P is some
formula or predicate  then I  am essentially making a  statement  which is  logically equivalent  to
saying that P a where a is some constant of my domain or some element of my domain   and P b
where b is another element of my domain and P c and so on for every element which is true of all
formalisms generally. It doesn’t have to be arity one, could be P x y and things like that. So the first
thing to observe is that a universal quantifier is a short form for making a statement which is true of
every element of domain. So I could have written the larger conjunct especially if my domain is
finite so let’s say if I am talking about this particular class which has twenty odd students, I could
have  written  some  statements  for  each  student  that  would  be  equivalent  to  saying  for  all  x
something like that. 
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Likewise there exists x P x or let me use a predicate with two variables so let’s say there exists y,
there exists x is equivalent to saying that P a or P a b or P a c or P b b and so on .. It’s just a large
disjunct essentially which of course explains the semantics of these quantified sentences quite easily
that a sentence like for all x P x will only be true when it is true for every element in the domain.
Whereas a sentence like there exists an x P x so for example there exists a number which is even
will be true as long as for some element it is true essentially. So this will give us insight into the two
rules of inference that we need to FOL essentially. 
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So essentially there are two rules we need, one is, and I will illustrate them using predicates of arity
1 but they carry forward to predicates with more arguments as well. So first rule says that if you
have a formula of the kind for all x P x then you can infer P of a where a is some constant in the
domain. Now you can see that if you look at the fact that for all x P x is just an abbreviation for a
large  conjunct,  this  is  just  an  incense  of  simplification  in  some  sense  essentially  because  in
propositional logic we said that if P is true and Q is true then you can infer that P is true essentially.
This rule is called universal instantiation and its one of the most common rules that we use in first
order logic. Essentially it says that for x you can substitute anything. You can even substitute a term
which is let’s say some function of x or something like that doesn’t matter, some function of a
function. Anything you put in, any term you give as an argument to this predicate this formula must
be true so you can substitute it. 
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The other rule is opposite which says that if you are given that a predicate is true for a certain
element a then you know that this formula is true and this formula says there exists x P x
 (Refer Slide Time: 6:40)

Because this formula is only saying that there exists at least one element for which this formula
must be true and we already know that it is true for a. So there exists a x P x must be true. This rule
is called Generalisation. Then just as we had rules of substitution in propositional logic, we also
have rules of substitution in FOL which means you can substitute one formula for another formula
and you might be familiar with these kinds of problems. So the two most common rules that we will
use are the fact that if you have a negation of a universally quantified formula then that is logically
equivalent to a formula which is an existentially quantified formula which a negation inside. 
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In other words, you can move the not inside and when you move it inside it changes the nature of
the quantifier  essentially. As you would expect  this  is  called de Morgan's  law and it’s easy to
understand  if  you remember  the  fact  that  a  universally  quantified  formula  is  basically  a  large
conjunction and we already know from the propositional logic that when you take a formula which
is a conjunct and take a negation of that and when you push the negation inside then it becomes a
disjunct. So that’s what is happening here essentially. 

Or let’s say P stood for mortal essentially, so P x says that x is moral essentially. This sentence is
saying that it is not the case that everything is mortal which of course is logically equivalent to
saying that there exists at least one element which is not mortal. So to say that it’s not the case that
everything is  mortal  is  equivalent to saying that there exists  at  least  one element  which is  not
mortal. And likewise if you move the across the existential quantifier we get universal quantifier. 
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So if you were to say now let’s say that P were to stand for immortal. Then you are saying on the
left hand side that there is no one who is immortal. There does not exist anyone who is immortal. Its
equivalent to saying that everyone is not mortal, everyone is not immortal essentially. And then you
have the usual rules which are like commutativity and so on.  So if you have a formula for all x for
all y P x y you can write equivalently for all y for all x P x y. It doesn’t matter as long as the
quantifer is of the same nature essentially. With a universal quantifier you can change the order. 
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Why do we need these rules because we are talking about now formal systems, you are talking
about manipulating formulae to either produce a formula we are interested in or produce a proof of
some kind essentially? Then I will encourage you to look at,  so if you look at this formula for
example so the same thing holds for existential quantifier
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But if I were to treat, look at the formula like this for all x there exists a y P x y and if I were to try
to say that there exists a y for all x P x y which means I try to interchange the two quantifiers then
this formula is false, it’s not true. So you cannot use it as a rule of substitution that if you have the
left hand side for example, you cannot replace with the right hand side. 
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In this particular example it so happens that if you have the right hand side you can still replace
with the left hand side. But that means you can write a rule of inference which says that there exists
a y for all x P x y implies for all x there exists a y P x y. 
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If you look at the left hand side, let us say P stands for admires. So P x y stands for the fact that x
admires y. So the left hand side is saying that there exists some y who everyone admires. There
exists a y such that for all x P x y is true. So let’s say Sachin, a non-controversial example, you can
say that everyone admires Sachin which is true essentially. The right hand is saying that everyone
admires someone, for all x there exists a y such that P x y is true. Now since we know that eveyone
admires Sachin, this right hand side is true because for every person there is atleast one person
whom we admire. So certain things hold in one direction. 
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So I will encourage you to look at quantified formulae where you have two quantifiers or maybe
you have just one quantifier and you look at formulae like this. There exists an x , this is an exercise
P x and Q x is equivalent to  there exists P x and Q x. So I am leaving it as an exercise. So look at
both  the  quantifiers,  universal  quantifier  and  the  existential  quantifier,  look  at  these  common



conjuncts which is and, or and try to see which sets of formulae are equivalent. 

 (Refer Slide Time: 14:51)

So let me try to give you an example, so if you say for example P stands for the fact that a number
is even and Q stands for a number is odd essentially. Then if there is a formula which says that there
exists a number which is even or odd and I say the other side is there exists a number which is even
or there exists a number which is odd then you can see that both the sides are true and both the sides
can be replaced with each other. So I wanted to somewhat study these formulae and look at the
combinations of the AND, OR and the two quantifiers essentially. 

*question from audience* No, no, no we have not talked about precedence at all because we have
used brackets everywhere. Wherever it is clear that brackets can be thrown away we will throw
them away. So we never say things like you know multiplication has a precedence over addition.
That is only if you don’t use brackets, if you use brackets you don’t need precedence. 

*question from audience*
There is no notion of precedence. The scope of a quantifier is whatever follows the quantifier. I
could have put brackets essentially. So for this statement for all x there exists a y, if I were to really
put brackets then I would first need to bracket which says that this is the scope of for all x and then I
would say that whatever follows this is a scope of existential quantifier. That is implicit. If you
remember when I had defined the syntax I had put brackets but in practice, we don’t really put
brackets unless there is a need to. 
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Okay so these are the kinds of rules of inference that we need. Now let’s try talking about proofs
now and let’s take our favourite rule of inference which is modus ponens essentially and let’s work
with our favourite example. Since we have started the course we have not been able to prove that
Socrates is mortal. Today let’s try and do that. What are we given? We are given the example that all
men are mortal. Then we are given Socrates is a man and we want to be able to prove that Socrates
is mortal. So from the semantics of the language we know that this is indeed entailed. 
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So let’s write this in first order logic. For all x Man x implies Mortal x. And let me a little bit of gap
because i need to make a couple of inferences. Then we are given Socrates is a man which we
express as Man Socrates.  And we want to infer that Mortal Socrates. We were not able to do this in
propositional logic because if you put each of these three sentences as propositional variables there
is no connection that you can see between them. But now we have a richer language and we have



more rules of inference that we can exploit essentially. 
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So what do we do? We first apply the new rule that we have just learned which is the rule of
universal  instantiation.  This  rule  says  that  in  any  formula  which  has  a  quantified  variable,
universally quantified variable x, I can replace x with any thing I want from the domain essentially.
In particular i can replace x with Socrates so I get a new formula, a new sentence which says that
Man Socrates implies Mortal Socrates. 
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Now you can see things are simple. I have a statement so if I put Man Socrates as P and Mortal
Socrates and Q then I have P implies Q and I will P below that so I can infer Q which is the rule of



modul ponens that we inherited from propositional logic. So we can just simply apply that, using
modus  ponens  and we have  a  proof  for  Mortal  Socrates.  We have  generated  the  formula  that
Socrates is mortal and that is the notion of a proof. 
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So this form of reasoning as you remember is called natural deduction. So we will start with natural
deduction  and  we  will  show  that  natural  deduction  or  direct  proofs  as  we  call  them  are  not
complete.  They were not complete in the case of propositional logic and they are not complete in
the case of first order logic. But we will start with that because that is a very useful system to have.
We will also call this as forward reasoning. And in particular we will use the term forward chaining
which is a natural form of forward reasoning and I will shortly describe what we mean by this.
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Now one problem here is that there is a guess symbol. Of course we can make informed guesses as
to what to substitute for a variable but nevertheless remember we are trying to write programs do
this essentially and if there is a whole set of statements we are working with and a whole set of
guesses we have to make then it will not be such a simple task. So there is a problem with forward
reasoning that we have to make a guess essentially. The other slightly smaller problem is that you
have to, remember we are talking about writing programs that you have to process the quantifiers
you know and you know handle them, pass them, prove, which can be more work in terms of
processing essentially. 

So what we will do is we will look at a variation of this rule which is used in forward chaining and
which is to use implicit quantifier form which will also address this problem of guessing essentially.
Because it is clear when we look at the target that we want. What is the target that we want? The
target is this instance of this universally quantified statement where x is substituted with Socrates.
It’s clear by looking at what you want to prove that we are talking about Socrates essentially. So we
want to basically associate the fact that Socrates is  a man to Socrates being mortal.  So in this
implicit quantifier form we do not write the quantifiers. So today we will only look at the universal
quantifier because a lot of knowledge that we want to store is going to be universally quantified. 

You know things like all men are mortal, all students are bright, all leaves are green, you know all
kinds of relations between things which are universally quantified. And we first focus on that. We
will  look at  existentially quantified variables a little bit  later. So what we will do is we take a
universally quantified variable let’s call it x and replace it with distinct form which will make us
kind of remember the variable which is universally quantified. So what we will do is we will just
put a question mark below the variable
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And keep in mind when we are writing our programs that the question mark stands for the fact that
x is universally quantified. So instead of saying that for all x Man x implies Mortal x we will now
write this as Man (question mark) x implies Mortal (question mark) x. This is just a change of
notation.
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It doesn’t change the sentence; the sentence is still the same. It’s just that we are not writing the
quantifier  and  we  are  remembering  the  fact  by  putting  a  question  mark  below  the  variable
essentially. So every time you see a variable with a question mark you must remember that it is
universally quantified. So i can still apply universal instantiation to this for example and produce a
formula which is true for Socrates, but we will not do that. What we will do is we will now try to
apply directly.  We will ask the question as to what is it that will make these two formulas the same.
I will just use the term expressions and then you say it identical 
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 And the answer to this is a substitution x with Socrates. I use not x so substitute the string not x



with the string Socrates. So again you must keep in mind that this is a constant in my language so I
can substitute it with a constant. In fact, I can substitute it with any term essentially in this case it
happens to be a constant. And this is a variable. So i can substitute a variable with a constant or any
term essentially. So let me actually write term here 
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So we call this thing a substitution and a substitution often donated by greek letters for example
theta says that I have a set of pairs which are variable and term. So substitution is a collection of
variable  term pairs  or  a  variable  value  pairs  as  some  books  would  say  and  in  particular  the
substitution that we are interested in is in our example theta, say the variable we are talking about is
x, maybe we will sometimes put the question mark here sometimes not because it is really clear
from the context what we are talking about. We are substituting x with Socrates and this is what our
theta is in this example. Now if we apply this substitution. So we have this notion of applying
substitution to a formula
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It means basically substitute whatever are the variables we have talked about in substitution with
the values that are given in the substitution. Remember substitution is a list of variable value pairs
and we apply this to get a new formula. So once we do that then we can directly infer Mortal
Socrates.
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So this rule which allows us to do this, takes these two formulae and infer this formula by applying
a substitution so theta that we are applying is this one here is we will call this as modified modus
ponens or MMP. So a modified modus ponens can be applied to a formula in an implicit quantifier
form and what it needs is that you must be able to make the left hand sides of the implication and
other statements somehow identical by applying a substitution. And then you can apply the same
substitution to the right hand side of the implication to infer that essentially.  So I will stop here. We
will formalise this notion in the next class and we will also look at the algorithm which is needed



for making these expressions identical and this algorithm is called the unification algorithm which
we will study in the next class. 

  


