
NPTEL

NPTEL ONLINE CERTIFICATION COURSE

Introduction to Machine Learning

Lecture 6

Prof. Balaraman Ravibdran
Computer Science and Engineering

Indian institute of technology

Statistical Decision Theory –
Classification

(Refer Slide Time: 00:15)

I am Victor and eigenvalue of are spectively so note here that I in vectors and eigenvalues are

tied together  which means that  every Eigen vector  has an Associated Eigen value.  We often

characterize square matrices inters of their eigenvectors one way of looking at high in vectors is

as follows can be thought of as a vector and in our heart for N and the square matrix acts like an

operator which transforms Into another n-dimensional vector ax now the Eigen vectors of a are



those vectors which on being transformed by a or operated upon by a I am only scared my laptop

but not rotated in other words their direction does not change.

 We can have a look at this example here the 2 cross 2 matrixes a on multiplying the vector X /1

gives back the vector multiplied by the real value 7. So when is an eigenvector of a and 7 is

aneigenvalue of A.
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We can see that you know would always be an eye effectors of any matrix if we simply go by the

ax equals λ X definition hence we only revert  nonzero vectors as I cannot read this. So the

question  is  given  a  matrix  a  how  does  one  find  all  the  Eigen  value  eigenvector  pairs  by

simplifying ax equals λ X we get a _ λ I 2 =0 now since we are only looking at nonzero vectors

in no fix cannot be 0and expand be a zero vector which means that picked up a - laughter should

pay zero so the equation that of a _ λ equals zero is called a characteristic equation of a so I think

this equation gives us all the in values of a one thing you use notice that even though all the

values of a are real is a real matrix the Eigen values can be complex.
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There  are  interesting  relations  between  some  properties  of  matrix  and  its  Eigen  values  for

instance the trace of a matrix is equal to the sum of its eigenvalues while the determinant is equal

to the product the rank of a matrix is equal to the number of nonzero.eigenvaluesnote that if an

eigenvalue  has  multiplicity  greater  than  1 for  instance  if  two distinct  Eigen vectors  x1  and

x2both have Eigen value λ.

 We would count λ twice also we can describe the eigenvalues of a inverse in terms of the Eigen

values of a provided of course a is invertible the eigenvalues of a inverse will be of the form 1 by

λ I where λ I is an Eigen value of A.
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.
Now let us have a look at an interesting theorem about eigenvalues and eigenvectors the theorem

goes  as  follows  if  a  matrix  has  all  its  eigenvaluesdistinct  in  its  Eigen  vectors  are  linearly

independent we shall prove this by what is called a proof bycontradictionif this theorem does not

fool that means there is a set of K Eigen vectors such that it is linearly dependent let the is vector

in the set B be I and the corresponding eigenvalue be λ .

Note that we are considering the smallest such set since the set is linearly dependent this means

there exists real called shrimps arises that summation AI VI equal to zero now let us multiply

both sides of the equation by a _ λ K times I since VK is an eigenvector of a _λ K IV K will be

equal  to  zero  we  can  understand  this  from  the  characteristic  equation  hence  the  term

corresponding to VK disappears from the equation since it goes to zero.

 Now for the remaining Eigen values since we know they are distinct the Tom λ I _λ K cannot be

equal to zero note that a _ λ I into V I simplifies to λ I _ λ K times V I since a VI equals λ IVI

forever now we can think of a I times I _ λ K as a new constant P I this means now that we have

a summation running from I equals 1 to I equals K _ 1 such that B IV I equal to 0 however we

had assumed that this is the that the set of size K was the smallest set of linearly dependent I

converters however now we have an even smaller set this contradicts our starting assumption



Hence such a set of K linearly dependent I can because cannot  exist for any K greater than equal

to  2hence  all  our  Eigen  vectors  are  linearly  independent  hence  our  theorem  stands  to

diagonalization gives us a way of representing a matrix.
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 In terms of its Eigen values and eigenvectors let us consider of n cross n square matrix a we

denote the matrix where every column is an eigenvector of a by s on multiplying by a each

column would get multiplied by λ height since the column itself is an eigenvector of A.

 This right hand side can then be simplified as the product of two matrices the first one being s

itself while the second one being the diagonal matrix where the is diagonal element is the Eigen

value I remember that the elitists is as now we have the equation a s equals capital laptop where

capital λ is the diagonal matrix of eigenvalues on simplifying this we get e equals capital λ s

inverse this is adiagonalization of a note that s inverse s is a diagonal matrix since s inverse is

nothing but capital λ the diagonal matrix of Eigen values.



This result is dependent on s beinginvertibleit will hold if the eigenvalues of matrix are distinct

since the eigenvectors would then be linearly independent this would mean the columns of s

would be linearly independent and hence s would be full ranked and as a consequence invertible.

(Refer Slide Time: 08:58)

Then do we say that the square matrix isdiagonalizablewell when such a diagonalization exists

we saw that we needed is to be invertible  for the diagonalization to exist  another advantage

ofdiagonalization is that it simplifies the process of computing paper.

 In we first represent every a in diagonalizedform now we can see that the s inverse of the first

term and the s of the second term would multiply to give us a similarly for the second third floor

and so on in this way by regrouping the terms we get a power in equal to s capital λ bar n sin

verse note that it is very easy to compute the nth power of a diagonal matrix since you just have

to raise every diagonal element to the power of nine this way the diagonalization has helped us

simplify the process of computing a for in without this simplification. We would have needed to

multiply non diagonal matrix n times if a Beatrix is symmetric.
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 Then all its Eigen values are real numbers also its eigenvectors are also normal that is they are

mutually  orthogonal  and  normalized  this  means  that  the  matrix  of  eigenvectors  s  is  also

orthogonal we have seen that for orthogonal matrices the inverse and the transpose are the same

hence we can write a equals capital λ s transpose as furtherdiagonalization we defined our for

symmetric matrices.
That  definite  Insane  inferred  from the  sides  of  their  eigenvalues  suppose  that  a  equals  λ  s

transpose  now  taking  the  quadratic  form with  respect  to  K  for  vector  face  transpose  a  X

simplifies to Transpose capital λ Y where Y is transpose X this further simplifies to sum over I λ

I by I square now for a matrix to be positive definite this term must always be positive since Y I

square is always greater than 0anyway the sign of this term depends on the Eigen values.

 If all the eigenvaluesare positive the matrix is positive definite if we know that the matrix is

positive semi definite or P is d then what can we say about its Eigen values since the quadratic

form of a PSD matrixes non-negative for any vector X this should hold for the eigenvectors to

now since ax equal to λ X transpose a X simplifies to λ norm of X square greater than equal to 0 .

Since eigenvectors are nonzero by definition the square of the norm is always positive this means

that every Eigen value of axis non-negative.
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We learnt about diagonalization which took in a square matrix of size n cross n and represented it

in terms of its eigenvectors however we cannot directly apply the same bygorillafor rectangular

matrices  since the notion of  Eigen vector  is  defined only for  a  square matrix  we need an I

realization for rectangular matrices since we come to them often for instance the matrix of n data

points or Features or the matrix of n documents and our terms for the rectangular matrix of size

M cross.

 In they can be predicted in terms of the Eigen vectors of a transpose and a transpose a both of

which are square matrices this is known as the singular value decomposition he is represented as

u Sigma V transpose where u is an M cross M matrix Sigma is an M cross n matrix and P is an N

cross matrix.
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The  three  elements  u  Sigma  and  V  are  as  follows  he  knew  every  column  represents  an

eigenvector of a a transpose in V every column represents an eigenvector of a transpose a Sigma

is a rectangular diagonal matrix with each element being the square off an Eigen value of a a

transpose or a transpose a now look at a a transpose and a transpose a have different eigenvectors

but the set of Eigen values is the same this is because suppose a transpose a X equals λ X for

some vacant vector X and Eigen value laughter now multiplying both sides by a we get a a

transpose times ax equals λ ax hence a x is an eigenvector of a transpose Y λ is also an Eigen

value of a transpose.

 This  is  why  a  transpose  they  have  the  same  set  of  Eigen  values  the  significance  of  this

decomposition is that if we ordered a human being and sigma since that the hike in values whose

magnitude is large will come first goods in U and V in the column order also along the diagonal

in Sigma then we can drop everything greater than he takes us to get a higher dimension and lore

and approximation of the original matrix a this approximate form of a will be represented as

human which is an Cross R matrix Sigma which is a R cross R matrix and V which is a n cross R

matrix.



Consider  a  function  f  which  takes  inmate  response  of  dimension  M cross  and  outputs  real

numbers the gradient is the matrix of partial derivatives then I comma G element of Delta F of a

or the gradient of f of a is the partial derivative of F of a with respect to air consider it in full time

hood function which takes in a n dimensional vector and returns a real novel the Hessian for this

function  is  defined  as  follows  the  I  comma  J  the  element  of  the  initial  is  given  by  first

differentiating f of X with respect to the J component of X HJ and in the highest component X I

you can see that admission would be an N cross n matrix.

Now let us study how we can find the gradient for some simple vector functions consider the

function f of X equals P transpose X where X is an Dimensional vector and B is also an n-

dimensional vector off X can be written down as sum over I equals one to I equals NP IX I

undifferentiating this with respect to the eighth component of the vector X we can do n things by

do XK equals B K the gradient of F X is given by the vector Be can see how this intuitively

relates to the first derivative of the scalar function FX equals ax which is equal to A.

We had earlier looked at a type of function called the quadratic form defined for an in cross n

matrix a the quadratic form with respect to matrix axis a function f of x equals x transpose ax

which takes in an n-dimensional vector X now let's have a look at how one can find the gradient

and Hessian on the quadratic form of a known symmetric matrix a they can write down f of X

assume over I equals 1 to n sum over Equals 1 to N K IJ X I XJ we can split-up this summation

into four terms based on whether I and J are equal or not equal to K finally.
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We get no effects bayou XK equal to twice somewhere I equals1 to I equals in a k i X I don’t

anticipation from the second last step to the last step can only be done if axis symmetric thus we

get the gradient of X transpose ax is equal to 2 matrix similarly on further different changing

every element of the greatly by XK we can derive the Hessian of the function the Hessian of this

function comes out to be 2

IIT Madras Production

Funded by
Department of Higher Education

Ministry of Human Resource Development
Government of India

www.nptel.ac.in

Copyrights Reserved

http://www.nptel.ac.in/

