NPTEL
NPTEL ONLINE CERTIFICATION COURSE
Introduction to Machine Learning

Lecture-78
Expectation Maximization Continued

Prof: Balaraman Ravindran
Computer Science and Engineering
Indian Institute of Technology Madras

So we started with defining Gaussian mixture models.
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Mixture Models

@ Superpositions or linear combinations of simple distributions
(density: p(xn) = Y_i_y T P(xal0k))
@ Example, mixture of Gaussians; density:
K
Plxa) = TN (xnpta, i)
k=1
1 1 1 Fe—1
—— ——eaxpl——{x — ) LT x—
PETEINE P{=5x—n) (x — )}
@ Each Gaussian A is a component of the mixture with its own mean
pig and covariance Ty (g = {pg. L })
e For p(x,) to be a valid density, we need:

Z.:;‘:]. D<m <1

k=1

N (x|js, E)

Ty mixing coefficients

GMM and EM

Which are just one second super position of A different Gaussians and in a general mixture
model instead of a Gaussian you can use any other probability distribution, so the three important
setoff parameter are the mixture weights the mean and the covariance matrices of each of the
Gaussians and there are K components I have still not come back to sum and ask how do we

estimate K we will see that today.
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Mixture Model

Figure: "Old Faithiul® datasst, kaft: ML fit single Gaussian, right: fit Gaussizn Mixture {from
Eishop, Pattern Recognition and Machine Learning )

GMM asd EM

We saw some examples of how to fit Gaussian mixture models we saw that Gaussian mixture
models are good models when there is naturally good models when there is a cluster structure in

a data so that each of those clusters can be nicely fitted with the Gaussian.
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Generative Madel

Sample z; ~ Multg(1,7): k"
compeonent with parameters

Sample x, ~ plag |6, )

Figure: Graphical Representation of
Mixture Madel. Circles: randem
variahles {ohserved — shaded, latent
— unshaded).

Walbhars Rajan (XROI) GMM asd EM

Then we saw that the Gaussian mixture model can be very intuitively explain through the
generative procedure where you assume that there is a latent variable that basically tells you
which Gaussian to pick and once you pick that you sample your or you generate your data from
that particular Gaussian, okay. I think this is very important to remember as it makes lot of the

math make sense of lot of math.

(Refer Slide Time: 01:50)



" |
plxn) = 2ok plan = K)plxalzn = &) = 32, plxn, 20)

plza = k)2 Prior probability of datapeoint x, from compenent k

plzn = k|xn): Posterior probability of datapaint x, from component &

@z = plzn = k|xn): Responsibility of compenent & for x,
et — el — | _ Mza=k)plaa|za=k)  _ mep(xalfi)
o vz ) = plzn = k|xa) TR k)Pl k) E;VI =it )
i T O %, ag:l
® Y(Zoh) = ==
I\ .m] Z:’- ] i e |05

G aad EM

Then we saw our posterior probability which are also called responsibility the posterior
probability of for the latent variable taking a value K given the data and we saw it coming up

repeatedly in all our calculation.
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Parameter Estimation

@ For a GMM with & components, on p—dimensional dala, parameters
0 = {7, iy, i} to estimate:
& & mixing coefficients
a & p—dimensional mean vectars
@ K [px pl-dimensional covariance malrices
@ Likelhood of W data points drawn independently

.'ll

K
p(x) = [T (E N (it i 1)
k=1

@ Log Likelihood:
N i K
log p(X ¥) = ) _log (Z mo (gl L J)
n=1 -1 /
@ . — argmaxg {log p{ X |}, tuap — argmaxs {log p(X[#) = log pld)}

@ Summation [‘}_:f_l] inside the logarithm: makes ML /MAP estimate
difficult. ne closed form selution

So the estimation assuming that we know k on P dimensional data the estimation problem is to

estimate these IT k, pk, and ok for each of the Gaussians right.
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Parameter Estimation

@ Lag Likelihoad: | = log p(X ) ZKJME(ZEAJhVHMpLEd)

. N TN alpte. T N
'.; :}—r-r"l—'- ~ I-l - ] L 1':"'1 .""I'.J =L-;—'| ',|:Zr..|.-:|}_ ]["r' J'i}
T N Gl £)
e A,

wlza)
[ dlog:x

L ¢ a g T Lk \ . ’ ;i
i . for x = 0, #(x <_|' Wix — 5) = —2W(x — 5) for symmatric W)

@ Setting ”":;'R =0, multiplying by L.

N Y
i E;.:; e
fg = ;

Fones V(Zak)

iwn—1

@ Weighted mean of all data points, weight: responsibility {posterior
probability of latent vanable)

Waibhay Rajan (ERCI

And we saw that initially we first saw that if we assume that we know the responsibility then the

math works out very nicely and we get very intuitive forms for the different parameters.
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Iterative Algorithm

@ Initialize @ = {me. g Lp b
a Compute log—likelihood
I = log p(X|#) = TN | log (Zf L TN (st Tk} )

@ Repeat until convergence:
# Set responsibility: [z ) = ,‘_L:’L'”
i T TPl
# Update parameters:
R b

* gy = SRS

Loy i) =
o T. — T ey ap—ag s — ey
o Tt ThEr)
—N

e T 1 "".-'.'m-:
s Focompute log-likelihood |

Vaibhars Rajan {EROI GMM aad EM

And then we design an iterative algorithm that essentially guesses the parameter first and
compute the responsibilities and then refines the guess in each iteration and later we saw that

actually is the EM algorithm for Gaussian mixture models, right.
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Expectation Maximization (EM)

a ML Estimation with Missing Data

X Ohserved / Incomplete Data
Z: Hidden data {assume discrete)
1%, 2} Complete data
Assume parameterized family: p{X. Z|@), unknown parameters @
Aim: Estimate argmaxg log p(X ]

® log p(X[?) = log T p(X, Z|3) (X7 inside log)
@ E.g Exponential p( X, Z|1) =& Exponential marginal p[ X |47)

@ Assume maximizing joint likelihood log p(X, Z]i?) is easy

Waibhar Ragan (%R

So let us see this more carefully in general EM had been has proposed for data which had some
hidden data points not known when you get the data set and so z is we denote that hidden data by
z and for the purpose of this discussion we assumed this discrete and data we saw that in case of
the Gaussian mixture models we can take latent variables to be hidden that is the common trick

used in many other models.

And then we saw that EM is a good approach to take when the joint likelihood the complete data
likelihood can be easily parameterized and the if that is a if you make this assumption then we

see that we can get the imagine likelihood also.
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Expectation Maximization (EM)

o Initialize 91°7 Evaluate /%) = log p{ X [91"))
@ Form=1.....T
s Posterior distribution of £ p{Z|X. 9 TJJ'I
a Expected Complete Likelihood under this distribution of £

Qe ™) =3 " p(Z)X, 0" log p( X, Z|9)

distribution of £ oomplete data likelihood
amsurming @ ! unknoen @

= Ez x gin— log p{X. Z|d)

o ™ _ argmaxg Q_{-J'J'.-J‘J":m 1]}

- " - 1 | - a
& Check for convergence: stop if (1M — flm=1) -,

So what is EM, the key idea is that so this is the key idea we take the expectation of the log
likelihood of the complete data under the distribution of latent variables assuming the guesses of

the parameter that we had made, right.
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Expectation Maximization (EM)

o argmaxy log plX|d)

o argmaxg logd 5 pl X, 2 summation inside log

® Grgmaxg E2|X.wcil log p( X, £ |a¥) we don’t know plZ X, )
® argmaxg Ele:ﬂ._... glog p(X. Z|@)  guess and iterate: works!

Glm argm;xljzlx_{;,.;m i log p(X. Z]@)

E Step i, hm “} = If':z ¥ gilm=1} log p(X, £]d)

M Step @™ = argmaxg Q4,91 1))

And instead of computing the maximum likelihood we compute the parameters that maximizes
this expectation and this is the key idea of EM, right. +Actually if you remember this I mean this

should be the main take away of the class this from now.
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EM for GMM

@ Gaussian Mixture Maodel:
=K - kI = i !
I'-*[x.ll_] o }_,I..:l ".'u'h'-' {xl.'l.l".k- Er's = }_..l.'=l Pl:z.'l = k}p[xr,|2., = -":]

@ Parameters @ = {m, . Ei b

¢ k mizing coefficients

e k p=dimensional mean vectars

@ & (px p)-dimensional covariance matrices
@ iy = argmarg{log p(X|3))
@ Hidden Varizbles = Latent Variables

So then we saw that if we use this formulation then for Gaussian mixture models we essentially

get back the iterative algorithm that we are guessed.
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Q3,9 V) = By yin-1 log plX, Z|)

= I".)|X.r.l' 1]
a

N
X lag pixn, 2. 17 ]}
M

"

il F A [

3 By g og [[imep{xaln)) =)
=1

NoOK
EEIM_UH. 1 [z — k)] bog (e plaa 00 )
p=1 k=1
MoK
zz_ri[fn "i|x.-"J'm_I'_:l||::-|;|:'-:..rr[x,._|l.l|,:|:|
=1 k=1
N K
}_. L T [zﬂh]“.-l-"' i log (mep{xa |0 )
n-1 k=1
NoOK
= Z Z 2k Y im -1y 108 T+ 1 Zak ] ey I {6}
=1

A

We used this so this expectation is also called Q function in the literature we get a very nice form
for the Q function the reason so reason we get a nice form is one because we using an
expectation operator which pushes the summation to the outside and the second reason is that we
get so we get the logarithm of the Gaussian without any summation inside this is the expectation

position outside, right this was the reason why the math’s worked out.
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ag & LI 1
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[/
T r Wz yota-

And the derivatives become easy to calculate for the case of Gaussian, right.
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o

() a—1 Tk ) g 1) ¥
I = -N m—

& Lr I-=-\."-'-h]||-a||ﬂ'\- 1

{rm} 1'__'-‘ 17iZek ] wlm—13 L% ek 3 e .l-'-:c-||_
o L = o

IR | Y Flm—1]
8| 3ot YEak ) aie—1] ,

L] |1 - [\ . 5 =L ..., H

We essentially got back the same formulas for pk, ok and Ilk that we had guessed earlier

summing we know the responsibilities, right.
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Expectation Maximization (EM)

@ Initialize 91", Evaluate /% = log p( X |9'™)
o Form=1....T
« Posterior distribution of £ @ p(£|X. glm 1
o Expected LL\;nmInrtﬂ. Likelihood under this distribution of £
QD 9" M) =B,y gie-u log p{X. Z|)

. 0= argmax Qlah, a1y

w Check for convergence: stop if /1M — j@-10

So general EEM algorithm is this guess the posterior distribution of the hidden data or the latent
variables and then refine your guess by taking by maximizing the Q function which is the
expectation of the complete data likelihood under the distribution of z with your current guess
and today we are going to see that this procedure is nice because it guarantees that the likelihood

will increase in every iteration.

So whatever likelihood you start with at every iteration the likelihood is going to increase so that
is what we are going to show today. This is the complete EM algorithm for estimating the

parameter of the Gaussian mixture.
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@ Assume a GMM, where covariance of each component <L, fixed

canstant ¢ (spherical) and w, = 1/K
@ Parameter to estimate;

1 1 1 e
(alh) = ——=——=expl—=(x —u) L (x —pu}}
LAY T T =gl —p) B (2 — )
1 | g i
N [}Tr]'-"-‘(!xlll: erlll'x I
- g o8] wgop | —[lxn—py |2 f2e)
* 7(zak) TR mpielt] | TR mmepl— [memgy) 7377

@ ¢ 0, term for which [|xe — | is smallest will ga to 0 mest slowdy
= (zo) = 1 and 7(z) = 0,k £ f
LI F] Lif & = argmin; ||, — el [*
Hazwi) = i
b 0 atherwise

And we also saw that if we take if we assume that the only parameter to be determine is pk

which means all we assume that all the Gaussians are spherical with known covariance matrices

and Ik, z1/k then essentially what we get back is the K means algorithm, okay.
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e EM monotonically incresses observed data likelihood

@ Until local maximum [or saddle peint)

We can see this so this is the theoretical guarantee I was talking about EM monotonically
increases the observed data likelihood and until it reaches some local maximum it can also get

stuck in some saddle points but it yeah.
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So it does not give you the global maximum it only gives you a it only reaches takes you to the
local maximum, so let me show you that simulation that I have shown you last time, so I
generate some data 3 Gaussians this is what the data looks like it was generated like this by
taking these 3 means and “covariance matrices this is what the fitted density looks like, if I run

EM once, right.

So this time EM did not do well you can see what happen the means that is inferred where two of
them are here and the third one is here because these two clusters are very close together it
assumed that it is coming it been generated from the same Gaussian, right. Let us now done this
so I ran this 10 times and I what I see is that the likelihood for each of this run the likelihood

keeps increasing.

Every time for each iteration the likelihood increases sometimes it get stuck and at a saddle point
or fixed point and then it does not increase, so this is a typical behavior of EM right this is a very
good debugging tool if you are writing EM algorithms for your models and if you see that the

likelihood is not increasing there is some debug in your program.
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Now let us see in these 10 runs these are the likelihood values it got stuck at, at the end I stopped
at the end not necessarily stuck at so if we see the minimum of these this is the second one and
we see the fitted density when we use that run yeah see the fit is not very good. If you take the
maximum, maximum likely hood among those 10 runs. So 9" one the fit is much better now,

you see this time when the lightly hood was in the 9" run the lightly wood was the highest

among these 10 runs and the fit was also much better.
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Theoretical Guarantes

w EM monotoncally increases ahserved data likel hond

w Until local maximum Jor saddle point)

So now let us prove that what we saw there is true in all cases, where it actually monotonically

increases lightly hood in very attrition.
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Background

g lepsen's lnequalite © 0 oooees functicn an interezl |, far
Koo €0 A o An 2 0 with 3550 Ar= 1,
] (Z -'.'.i':] < .-Il.lll-l.".'-'
i = 5' L)
" i=1 s =1
o {convex o F concave [ lopx: convex)

Wpl e E":_I AT IC;._ Xy

L = ai=

So the main results we will lead to prove this is Jensen’s inequality are you familiar with this?
No okay this is very simple, so if you have a convex function and you have linear combination of
these points, then the convex function applied to the linear combination is )’ is applied to each of
the x. and now what we are interested in you might have guessed, is the algorithm function

because log is what appears.

And if you use the fact — log x is convex and put it here then we get this inequality. The function

is just logarithm, so what we see is that the log of )’ is > those y8 log xi.
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Monotonicity of EM

@ gir s abvrary diseribiitics oser the latene wadabies
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@ Which distribution g show o we choase?

So let us start with, so we have these latent variables or the hidden variables in some cases, let

assume that cube is some arbitrate distribution over the latent variables, we will not define what

q is right now. So because these are probability values each of these Qzn for each latent is > 0

and this sum over all Zn is = 1. So now let take the lightly hood of the data, and we express it

again as usual in terms of joint lightly hood.

With respect to latent variables and then we just multiply and divide by q of zn. Now because of

this condition Q(zn ) is same as vy it follows the assumptions of Jensen in equality. So we can

Jensen in equality here and get a lower bound on this expression right basically take the )

outside and get the log inside and this lower bound as follows from Jensen inequality right all we

have done is applied this in equality.
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Monotonicity of EM

@ q(z.): arbitrary distribution over the latent variables

® g(ze) > Qwith 3 g(z.) =1

log p(X[2) =Y "lag % plix,.z, 1'*]‘ k

z..‘,IP(M' 2..‘ )
Toglz)

o el z,)0)]
g [20monl®)

N gz log plx, 28 < glz ) log glz) = Q0 )
4 — —

entropy Hiq)
2 log plxy. el 9]

@ log p(X|d) = Qb q)

@ Which distribution g should we choose?

NPTEL Valkhav Rajan [KRCT) GMM and EM

And Ai are the gz because they are probability is the assumptions at true okay so now this
logarithm can be written as a difference of the log of the numerator- log of the denominator and
what we get here of this expression should start looking familiar to you this is just an expectation

is expectation of the complete data likelihood under the distribution q right.

So this is something that we, we have been working with in EM and on this side we have an
entropy right this so this entropy term is not going to be not going to play a big role here but we
are going to be interested in this so let us call this q this is although it will be the same q
eventually I have used different here because right now we do not know the risk same thing

okay.

So what have we got we have got a lower bound on the log likelihood right and we have proved
this for any arbitrary distribution right we have not said that it is the distribution of the latent
variables under the guesses of the parameters that we had we did not say anything about that so
now the question is which distribution q should be chose any guesses so what we have is a lower

bound what kind of distribution would you like to choose no guesses think iteratively alright.

So we since it is the lower bound we want the bound to be as tight as possible okay so we will
choose the g such that we want to maximize such that we maximize the lower bound to reach

the actual likelihood right so that is the natural choice when you are dealing with bounds right.
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Monotonicity of EM

@ Maximiza the lower bound to reach the actual likelihood
- [ p(%, z2|1) ]
L1, q) = Lq[/..)l;zg Pl 219)

7

=S ezl [ ol zal%0. P xa|#)
)_m o) e = ——

- }_: qlza) log [p(xa|d]]
e —— e

—KL il )l |{znlin ) ’ #

g e
adupandant of g

= L qlz.) log

£

[ plzalxn 9)]
qlze

@ glz,) = plag|xp, 0} = q(z,)log W =0

@ But real 4 is unknown, lets use q™(z,) = plza|x.. 0'™)
o Qi".q") =Y Egnllog plx, za[07)] +  H(g™
: R
ndependent of &
@ O™ = argmang Egn(log p(X, Z|0™)]: M Step
@ So what?

Vaibhav Rajan [XRCI) GMM and EM

So let us see how we can choose such a q okay to do that let us look at this expression again we
will ignore the Y n because we will bring it back later but I have just not written it so this is the
original expression for the lower bound right q function is here I have just written that again here
and now we I am just expressing this joint likelihood I am factorizing it in this way so you have

the probability of X, and Z, and the joint probability is just the probability of Z,.

And in the probability of Z, is given here so they should be Xn, Zn here yeah it is fine so this is
just factorization of this probability and then I just separate it out in different way this time and
what we get here is a term which is just the back distance between gz and this probability this
distribution right it is negative of the curl divergence between gz and probability of Zn given as

Xn.

And this term is essentially summing over all Zn for this so this is independent of q and we just
get logarithm of you just kept the likelihood back here right and here we have the negative curl
divergence between these two distributions so if we want the lower bound to reach the actual

likelihood which we are getting here we want this term to become 0 right.

And that we can do by just putting qz and equal to this probability, probability of Zn given x and
theta but again we come back to the same problem that we do not the actual theta because theta
but in an iteration of EM we have guess the value of theta EM sow e can use that value of theta

EM to and use that probability distribution as Q okay.



So what we get if we use this value for Qm which is the probability of Z and given X and the
guess theta EM values is nothing but this expectation which we saw coming up here except
instead of using the we are using Qm which is based on the current guess value and we are
getting entropy term but this entropy term is independent of theta so when we maximize this in
our EM step of EM this does not play any role and what we have eventually maximizing is this

expectation of likelihood under the distribution of Z.

So let me again summarizes what we have did I took the log likelihood this is the likelihood that
we are interested in forgetting maximum likelihood estimates using Jensen inequality I got a
lower bound the lower bound was in the form of the expectation right which is the expectation
we maximize in the E-step if we take gqm to be exactly this probability distribution and this
probability distribution terms out to be exactly the probability distribution to take which will

maximize the lower bound to reach the actual data log likelihood and that step right.

So what, what have we done we have maximize we have taken our current guesses and chosen
the value of gm that will reach the actual likelihood with respect to the current guess okay but
that has not closer to the real theta right we are still working with your guesses of a the

parameters is that clear so here comes the crucial part.
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Monotonicity of EM

o At the mt" step, §™(2,) = plzqx,, #)
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KLtz )| pl7a 5a 4300 =tag )

independent of @
a LA™ q7) = lag plx, [@)
o QU g7 = E'II”  log o, [@7) = log p( X |07
& Loweer hound s Iit;"'_ after E slep

o Maximizing & will also maximize the data leg likelihood!




So at the M step we took @™ the distributions zn to be exactly this probability distribution the
posterior distribution Zn give the data points and the current cases and we saw that this
likelihood is exactly equal to the kl divergence + the log likelihood and because this ki
divergence becomes 0 at this point this q function is exactly = to the log likelihood which means
the lower bound is tight after E step which is what we wanted and so maximizing Q after this is

going to maximize the data log likelihood also.
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To see that see this picture so this is your current value the guest value of 8 now the E step and
this red curve here is the actual data log likelihood with the original parameters that you do not
know now what the E step as ensured is that you get a lower bound suing the q function that we

had so that lower bound is L so this is the is the lower bound right.
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And which is exactly the expectation that we are trying to maximize.
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So you use this L function and you get a no that this is lower bound which means it is always
lesser than the that curve right the important point is that at the E step this bound is tight which
means this is touching the red curve right and if you maximize this you will get a new set of
parameters which will increase the L value right but because this is touching it and because this
is the lower bound it will also increase the likelihood value for the with respect to the original 0

right.

So it is a trick because you cannot we cannot compute this likelihood but we know the lower
bound we have computed the lower bound and we have maximizing this but it is guaranteed to
be the new values are guaranteed to increase the likelihood in the original likihood also because
at this point the approximation is tight and we are maximizing it okay so now again the at the
next step the E step will ensure that the lower bound that you calculate the green curve will be

tight.

And once again you maximize it you will get a value somewhere here or any way here and the
next value of 8 is again going to increase the likelihood because every time you are at each step
the E step will ensure that you get a proper lower bound and you always get to the you always

make sure that it is tight because of the choice of the distribution of q that we take at each step.

Sorry yeah because what if we get the saddle point the likelihood curve need not always be like

this right so for example the likelihood value can be something like this, where you can suppose



it goes like this then how at this point it is not guarantee to go up that way it will just be here in

this region so the usual problem with optimization, so we can say now we can do this formally.
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We at the M + 1 M+ first round we have some parameters that is the log likelihood of those
parameters and we know that q function is lower bound we provide it for any q any choice of the
distribution a small q and then this q value was chosen by the pervious iteration M step so this
equality follows this is the maximum value of q which maximizes the maximum at all
parameters curly 0 and then this by definition is greater than any g here and because this E step
bond is tight we get that this is equal to the logarithm equal to the likelihood in the previous step

which is just the likelihood of the previous step.
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Okay.
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So any question now is this clear, why it is increasing the likelihood at each point, at each

hydration. Al right, so now, so that covers the basics of N, now let us look at some strange cases.
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Sometimes what happens is when you are running here, you tend to get very strange solutions
and this could be one of the reasons. So I am going to motivate this mathematically, so suppose
you take your likelihood for that you want to maximize and you set, now suppose you have two
components okay, it does not matter. So take one of the components and set p1 the mean to be

equal to x1, one of the data points.

And set £1 to be equal to some diagonal matrix of dimensionality, and take some pivot. So this
can be just split into two parts we are looking at just one Gaussian here and when you plug in
these values you essentially get this expression okay. Now what happens if £1° the variance
tends to 0, this likelihood essentially tends to oo, I mean this total likelihood, because this value

goes to oo right.

So this is a problem in general with maximum likelihood solutions, your, the likelihood will tend

to oo although the fit is really bad.
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This looks like, so the pictorial representation is something like this. What you are doing is you
are taking two Gaussians and you are fitting just one data point with one Gaussian, and the other
Gaussian is fitting the rest of the data points. So this is in most real life cases this is not a good
thing to do, because yeah, it is very unlikely that the data has been generated by two Gaussians

like this, one data point from one Gaussian and the rest from the other Gaussian right.

So any, so when you try to do this with just a single Gaussian, you think you will get this
problem? Why? Yeah, but suppose you have, suppose I give you, I take uni-dimensional case,
and I fit this one Gaussian here, this, there will be a nonzero probability of a point coming from
somewhere here right, you know this is the mean. So intuitively we will think that the blue

Gaussian is what might have generated this data with so much variance right.

But there is a nonzero probability that the data has been generated from such a Gaussian, so why
we will not have this problem there. Yeah, so the maximum likelihood solution will never give
you this, maximum likelihood solution is most likely to give you something like this right. When
you work out the likelihood the likelihood for the pink Gaussian is definitely going to be lesser
than the likelihood for this right.

And again this is just due to the mathematical form of the Gaussian mixture, so because of the
summation this is really happening, because it is possible that you can fit the data like that in a

way that the likelihood goes to oo.
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So how do you deal with this, the simplest way in a frequent framework is to just keep when you
are running EM you check whether it is happening or not and if you, if it is happening then you
just reinitialize the parameters, you keep trying to detect such collapsing components and try to
do it. And in general actually it is better to restart EM several times, because EM is, as you know
it can get stuck at a fixed point it is better to restart EM several times because EM is so as you
know it can get stuck at a fix point or a saddle point so with different initialization parameters

you can get much better solutions as we saw in this stimulation as well.

The basin solution is to take priors okay, you take priors on each of the parameters and it turns
out you can work out the math and see that the expects the E step remains the same and the only
difference necessary is the additional term in the M step that we need to maximize and this

usually solves the problem by choosing right priors.
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So now it is come to finding K, till now we have assumed that we know the number of
components and how do we find K this is there is no really good solution to finding K and what
states this in usually prefer and what works well in practice is to generate many candidate models
you look at the data and you assume that okay, they cannot be lesser than three components here

they can be more than 12 components here.

So let us rum EM for all these different values of K and you choose that K which minimizes
some criterion okay, and this there are different criteria that people have discussed for example it
is something like the regularization that you do in another models you basically penalize high

values of K.

So the AIC a K information criterion is this, this is just the log likelihood +K, so minimizing this
will give you the least number of components which can explain the data well okay. There is a
BIC information criterion which uses K logn similar general idea and then are other approaches
of finding K which are basin nonparametric approaches where you assume some derive process

priors and then the method itself automatically estimates K, right.

So the algorithm that we discussed in that form was given in 1977, so you can imagine that a lot

of work has been done on EM since 1977.
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There are lot of different kinds of EM algorithms, there are online versions that work on large
streaming data sets like I said EM is designed to find local maximum, so there are annealed
versions that increases the chances of finding global maximum, the simplest solution is random
restarts but annealed does something more variation, so sometimes so in the case of Gaussian we
saw that the E step and the M steps they were computationally attractable we could derive

analytical formula for these.

But in a lot of cases if there is time I can show one, we will see that they are not computationally
intractable and sometimes you need to do additional things. So there are variational versions of
EM, there are stochastic versions of EM, Monte Carlo version where you have intractable E
steps there is something call generalized EM which was one of the earliest algorithms were you

have computation intractable m steps.

Then when we have sequential parameters dependent parameters then there are other versions of
EM and in general EM is quite slow right, so your each step within Em with the iteration is
computationally not very expensive, but convergences usually very slow and is especially slow
when you have lots of missing data or lots of latent variables to infer okay. So there are many
approaches to deal with that these I can acceleration techniques over relaxed EM and so on. So to

summarize like what I said.
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The major advantage of EM is that it monotonically increases the likelihood it guarantees that, if
you take any distribution any mixture model or anything any likelihood computation where there
are hidden variables or latent variables and you apply EM and if you follow the formulas

carefully you will guarantee that the likelihood is increased except at fixed points.

And it is usually numerically very stable compared to other techniques like radiant descent, it is
easily implemented and the interesting thing is that many problems can be modeled as
incomplete data problems we saw that in the case of Gaussian mixture there is no missing data
and the beginning but we assume the latent variables to be missing. The disadvantages as I
mentioned is slow convergence and there is no guarantees of finding global maximum, and the

steps maybe analytical intractable okay.
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Yeah, so the two standard references have very nice explanation for you and there are very nice
tutorials also available Matrix Cookbook you should be familiar with to get all your matrix
derivatives and this is these standard reference if you want to go really deep into EM McLachian
and Krishnan’s book and EM the whole book is on EM algorithm. The EM can always solve it
but it not maybe able to solve well, well lots of missing data then usually the it does not give

good.

Right, so there is some there is lot of work on so these estimates that you are getting you may
need to, you may sometimes want to know how good those estimates are right, so you want to
get these standard errors on those estimates, so there is so in fact that is one of the flaws of EM it
does not automatically give you that but there are methods to deal with that for example, there
are some boots trap methods that can give you estimates of the error that you error estimates for

the estimated parameters.

Yeah, there also guessed so that is something you have guess based on the data that you have, so
if you take these standard r packages like M clusters or something like that they usually have
some default parameters 2 and 12 or something like that but then you can set them so when M
cluster trans and gives you like what I showed in this stimulation when it runs and tries to find
the parameters it runs it for all those different values of K and takes the best one, best one with

respect to the likelihood, okay.



So it will be a good exercise I think like if you take some different distribution so take something
like Bernoulli’s and very simple distribution and work out the math it will be quite nice to see
how it works out and yeah, even the other thing that I did not work out here, this part is also
quite simple to do yeah, assume that there is a prior and see how it works out. But the general

idea is clear right okay.
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