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So we started with defining Gaussian mixture models.

(Refer Slide Time: 00:19)

Which are just one second super position of A different  Gaussians and in a general mixture

model instead of a Gaussian you can use any other probability distribution, so the three important

setoff parameter are the mixture weights the mean and the covariance matrices of each of the

Gaussians and there are K components I have still not come back to sum and ask how do we

estimate K we will see that today. 
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We saw some examples of how to fit Gaussian mixture models we saw that Gaussian mixture

models are good models when there is naturally good models when there is a cluster structure in

a data so that each of those clusters can be nicely fitted with the Gaussian.
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Then  we  saw that  the  Gaussian  mixture  model  can  be  very  intuitively  explain  through  the

generative procedure where you assume that there is a latent variable that basically tells you

which Gaussian to pick and once you pick that you sample your or you generate your data from

that particular  Gaussian, okay. I think this is very important to remember as it makes lot of the

math make sense of lot of math.
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Then  we  saw  our  posterior  probability  which  are  also  called  responsibility  the  posterior

probability of for the latent variable taking a value K given the data and we saw it coming up

repeatedly in all our calculation.
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So the estimation assuming that we know k on P dimensional data the estimation problem is to

estimate these Π k, μk, and σk for each of the Gaussians right.
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And we saw that initially we first saw that if we assume that we know the responsibility then the

math works out very nicely and we get very intuitive forms for the different parameters.
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And  then  we  design  an  iterative  algorithm  that  essentially  guesses  the  parameter  first  and

compute the responsibilities and then refines the guess in each iteration and later we saw that

actually is the EM algorithm for Gaussian mixture models, right.
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So let us see this more carefully in general EM had been has proposed for data which had some

hidden data points not known when you get the data set and so z is we denote that hidden data by

z and for the purpose of this discussion we assumed this discrete and data we saw that in case of

the Gaussian mixture models we can take latent variables to be hidden that is the common trick

used in many other models.

And then we saw that EM is a good approach to take when the joint likelihood the complete data

likelihood can be easily parameterized and the if that is a if you make this assumption then we

see that we can get the imagine likelihood also.
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So what is EM, the key idea is that so this is the key idea we take the expectation of the log

likelihood of the complete data under the distribution of latent variables assuming the guesses of

the parameter that we had made, right.
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And instead of computing the maximum likelihood we compute the parameters that maximizes

this expectation and this is the key idea of EM, right. +Actually if you remember this I mean this

should be the main take away of the class this from now.
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So then we saw that if we use this formulation then for Gaussian mixture models we essentially

get back the iterative algorithm that we are guessed.
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We used this so this expectation is also called Q function in the literature we get a very nice form

for  the  Q  function  the  reason  so  reason  we  get  a  nice  form is  one  because  we  using  an

expectation operator which pushes the summation to the outside and the second reason is that we

get so we get the logarithm of the Gaussian without any summation inside this is the expectation

position outside, right this was the reason why the math’s worked out.
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And the derivatives become easy to calculate for the case of Gaussian, right.  
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We essentially  got  back the  same formulas  for  μk,  σk  and Πk that  we had guessed  earlier

summing we know the responsibilities, right.

(Refer Slide Time: 06:00)



So general EEM algorithm is this guess the posterior distribution of the hidden data or the latent

variables  and then  refine  your  guess  by taking  by maximizing  the  Q function  which  is  the

expectation of the complete data likelihood under the distribution of z with your current guess

and today we are going to see that this procedure is nice because it guarantees that the likelihood

will increase in every iteration.

So whatever likelihood you start with at every iteration the likelihood is going to increase so that

is  what  we are going to  show today.  This  is  the complete  EM algorithm for estimating  the

parameter of the Gaussian mixture.
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And we also saw that if we take if we assume that the only parameter to be determine is μk

which means all we assume that all the Gaussians are spherical with known covariance matrices

and Πk, z1/k then essentially what we get back is the K means algorithm, okay.

(Refer Slide Time: 07:22) 



We can see  this  so  this  is  the  theoretical  guarantee  I  was  talking  about  EM monotonically

increases the observed data likelihood and until it reaches some local maximum it can also get

stuck in some saddle points but it yeah.    
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So it does not give you the global maximum it only gives you a it only reaches takes you to the

local  maximum,  so let  me show you that  simulation  that  I  have  shown you last  time,  so  I

generate some data 3 Gaussians this is what the data looks like it was generated like this by

taking these 3 means and `covariance matrices this is what the fitted density looks like, if I run

EM once, right.

So this time EM did not do well you can see what happen the means that is inferred where two of

them are here and the third one is here because these two clusters are very close together it

assumed that it is coming it been generated from the same Gaussian, right. Let us now done this

so I ran this 10 times and I what I see is that the likelihood for each of this run the likelihood

keeps increasing.

Every time for each iteration the likelihood increases sometimes it get stuck and at a saddle point

or fixed point and then it does not increase, so this is a typical behavior of EM right this is a very

good debugging tool if you are writing EM algorithms for your models and if you see that the

likelihood is not increasing there is some debug in your program.
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Now let us see in these 10 runs these are the likelihood values it got stuck at, at the end I stopped

at the end not necessarily stuck at so if we see the minimum of these this is the second one and

we see the fitted density when we use that run yeah see the fit is not very good.  If you take the

maximum, maximum likely hood among those 10 runs.  So 9th one the fit is much better now,

you see this time when the lightly hood was in the 9th run the lightly wood was the highest

among these 10 runs and the fit was also much better. 
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So now let us prove that what we saw there is true in all cases, where it actually monotonically

increases lightly hood in very attrition.
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So the main results we will lead to prove this is Jensen’s inequality are you familiar with this?

No okay this is very simple, so if you have a convex function and you have linear combination of

these points, then the convex function applied to the linear combination is ∑ is applied to each of

the x. and now what we are interested in you might have guessed, is the algorithm function

because log is what appears. 

And if you use the fact – log x is convex and put it here then we get this inequality. The function

is just logarithm, so what we see is that the log of ∑ is ≥ those γ8 log xi.
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So let us start with, so we have these latent variables or the hidden variables in some cases, let

assume that cube is some arbitrate distribution over the latent variables, we will not define what

q is right now. So because these are probability values each of these Qzn for each latent is > 0

and this sum over all Zn is = 1. So now let take the lightly hood of the data, and we express it

again as usual in terms of joint lightly hood.

With respect to latent variables and then we just multiply and divide by q of zn. Now because of

this condition Q(zn ) is same as γ it follows the assumptions of Jensen in equality. So we can

Jensen in equality  here and get a  lower bound on this  expression right  basically  take the ∑

outside and get the log inside and this lower bound as follows from Jensen inequality right all we

have done is applied this in equality. 
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And λi  are  the qz because they  are probability  is  the assumptions  at  true okay so now this

logarithm can be written as a difference of the log of the numerator- log of the denominator and

what we get here of this expression should start looking familiar to you this is just an expectation

is expectation of the complete data likelihood under the distribution q right.

So this is something that we, we have been working with in EM and on this side we have an

entropy right this so this entropy term is not going to be not going to play a big role here but we

are going to be interested in this  so let  us call  this  q this  is although it  will  be the same q

eventually I have used different here because right now we do not know the risk same thing

okay.

So what have we got we have got a lower bound on the log likelihood right and we have proved

this for any arbitrary distribution right we have not said that it is the distribution of the latent

variables under the guesses of the parameters that we had we did not say anything about that so

now the question is which distribution q should be chose any guesses so what we have is a lower

bound what kind of distribution would you like to choose no guesses think iteratively alright.

So we since it is the lower bound we want the bound to be as tight as possible okay so we will

choose the  q such that we want to maximize such that we maximize the lower bound to reach

the actual likelihood right so that is the natural choice when you are dealing with bounds right.
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So let us see how we can choose such a q okay to do that let us look at this expression again we

will ignore the ∑n because we will bring it back later but I have just not written it so this is the

original expression for the lower bound right q function is here I have just written that again here

and now we I am just expressing this joint likelihood I am factorizing it in this way so you have

the probability of Xn and Zn and the joint probability is just the probability of Zn.

And in the probability of Zn is given here so they should be Xn, Zn here yeah it is fine so this is

just factorization of this probability and then I just separate it out in different way this time and

what we get here is a term which is just the back distance between qz and this probability this

distribution right it is negative of the curl divergence between qz and probability of Zn given as

Xn .

And this term is essentially summing over all Zn for this so this is independent of q and we just

get logarithm of you just kept the likelihood back here right and here we have the negative curl

divergence between these two distributions so if we want the lower bound to reach the actual

likelihood which we are getting here we want this term to become 0 right.

And that we can do by just putting qz and equal to this probability, probability of Zn given x and

theta but again we come back to the same problem that we do not the actual theta because theta

but in an iteration of EM we have guess the value of theta EM sow e can use that value of theta

EM to and use that probability distribution as Q okay.



So what we get if we use this value for Qm which is the probability of Z and given X and the

guess theta EM values is nothing but this expectation which we saw coming up here except

instead of  using the we are using Qm which is based on the current guess value and we are

getting entropy term but this entropy term is independent of theta so when we maximize this in

our EM step of EM this does not play any role and what we have eventually maximizing is this

expectation of likelihood under the distribution of Z.

So let me again summarizes what we have did I took the log likelihood this is the likelihood that

we are interested in forgetting maximum likelihood estimates using Jensen inequality I got a

lower bound the lower bound was in the form of the expectation right which is the expectation

we maximize in the E-step if we take qm to be exactly this  probability distribution and this

probability distribution terms out to be exactly the probability distribution to take which will

maximize the lower bound to reach the actual data log likelihood and that step right.

So what, what have we done we have maximize we have taken our current guesses and chosen

the value of qm that will reach the actual likelihood with respect to the current guess okay but

that  has  not  closer  to  the  real  theta  right  we  are  still  working  with  your  guesses  of  a  the

parameters is that clear so here comes the crucial part.
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So at the M step we took qm  the distributions zn to be exactly this probability distribution the

posterior  distribution  Zn  give  the  data  points  and  the  current  cases  and  we  saw  that  this

likelihood  is  exactly  equal  to  the  kl  divergence  +  the  log  likelihood  and  because  this  kl

divergence becomes 0 at this point this q function is exactly = to the log likelihood which means

the lower bound is tight after E step which is what we wanted and so maximizing Q after this is

going to maximize the data log likelihood also.

(Refer Slide Time: 21:04)

To see that see this picture so this is your current value the guest value of θ now the E step and

this red curve here is the actual data log likelihood with the original parameters that you do not

know now what the E step as ensured is that you get a lower bound suing the q function that we

had so that lower bound is L so this is the is the lower bound right.



(Refer Slide Time: 21:36)

And which is exactly the expectation that we are trying to maximize.
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So you use this L function and you get a no that this is lower bound which means it is always

lesser than the that curve right the important point is that at the E step this bound is tight which

means this is touching the red curve right and if you maximize this you will get a new set of

parameters which will increase the L value right but because this is touching it and because this

is the lower bound it will also increase the likelihood value for the with respect to the original θ

right.

So it is a trick because you cannot we cannot compute this likelihood but we know the lower

bound we have computed the lower bound and we have maximizing this but it is guaranteed to

be the new values are guaranteed to increase the likelihood  in the original likihood also because

at this point the approximation is tight and we are maximizing it okay so now again the at the

next step the E step will ensure that the lower bound that you calculate the green curve will be

tight.

And once again you maximize it you will get a value somewhere here or any way here and the

next value of θ is again going to increase the likelihood because every time you are at each step

the E step will ensure that you get a proper lower bound and you always get to the you always

make sure that it is tight because of the choice of the distribution of q that we take at each step.

Sorry yeah because what if we get the saddle point the likelihood curve need not always be like

this right so for example the likelihood value can be something like this, where you can suppose



it goes like this then how at this point it is not guarantee to go up that way it will just be here in

this region so the usual problem with optimization, so we can say now we can do this formally.

(Refer Slide Time: 24: 15)

We at the M + 1 M+ first round we have some parameters that is the log likelihood of those

parameters and we know that q function is lower bound we provide it for any q any choice of the

distribution a small q and then this q value was chosen by the pervious iteration M step so this

equality  follows  this  is  the  maximum  value  of  q  which  maximizes  the  maximum  at  all

parameters curly θ and then this by definition is greater than any q here and because this E step

bond is tight we get that this is equal to the logarithm equal to the likelihood in the previous step

which is just the likelihood of the previous step. 
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Okay.   

(Refer Slide Time: 25:15)



So any question now is  this  clear,  why it  is  increasing  the likelihood at  each point,  at  each

hydration. Al right, so now, so that covers the basics of N, now let us look at some strange cases. 
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Sometimes what happens is when you are running here, you tend to get very strange solutions

and this could be one of the reasons. So I am going to motivate this mathematically, so suppose

you take your likelihood for that you want to maximize and you set, now suppose you have two

components okay, it does not matter. So take one of the components and set μ1 the mean to be

equal to x1, one of the data points.

And set Σ1 to be equal to some diagonal matrix of dimensionality, and take some pivot. So this

can be just split into two parts we are looking at just one Gaussian here and when you plug in

these values you essentially  get this  expression okay. Now what happens if Σ12 the variance

tends to 0, this likelihood essentially tends to ∞, I mean this total likelihood, because this value

goes to ∞ right.

So this is a problem in general with maximum likelihood solutions, your, the likelihood will tend

to ∞ although the fit is really bad. 
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This looks like, so the pictorial representation is something like this. What you are doing is you

are taking two Gaussians and you are fitting just one data point with one Gaussian, and the other

Gaussian is fitting the rest of the data points. So this is in most real life cases this is not a good

thing to do, because yeah, it is very unlikely that the data has been generated by two Gaussians

like this, one data point from one Gaussian and the rest from the other Gaussian right.

So any, so when you try to do this  with just  a single Gaussian,  you think you will  get this

problem? Why? Yeah, but suppose you have, suppose I give you, I take uni-dimensional case,

and I fit this one Gaussian here, this, there will be a nonzero probability of a point coming from

somewhere here right,  you know this is the mean. So intuitively we will  think that the blue

Gaussian is what might have generated this data with so much variance right.

But there is a nonzero probability that the data has been generated from such a Gaussian, so why

we will not have this problem there. Yeah, so the maximum likelihood solution will never give

you this, maximum likelihood solution is most likely to give you something like this right. When

you work out the likelihood the likelihood for the pink Gaussian is definitely going to be lesser

than the likelihood for this right.

And again this is just due to the mathematical form of the Gaussian mixture, so because of the

summation this is really happening, because it is possible that you can fit the data like that in a

way that the likelihood goes to ∞.
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So how do you deal with this, the simplest way in a frequent framework is to just keep when you

are running EM you check whether it is happening or not and if you, if it is happening then you

just reinitialize the parameters, you keep trying to detect such collapsing components and try to

do it. And in general actually it is better to restart EM several times, because EM is, as you know

it can get stuck at a fixed point it is better to restart EM several times because EM is so as you

know it can get stuck at a fix point or a saddle point so with different initialization parameters

you can get much better solutions as we saw in this stimulation as well.

The basin solution is to take priors okay, you take priors on each of the parameters and it turns

out you can work out the math and see that the expects the E step remains the same and the only

difference necessary is the additional term in the M step that we need to maximize and this

usually solves the problem by choosing right priors. 
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So  now it  is  come  to  finding  K,  till  now we  have  assumed  that  we  know the  number  of

components and how do we find K this is there is no really good solution to finding K and what

states this in usually prefer and what works well in practice is to generate many candidate models

you look at the data and you assume that okay, they cannot be lesser than three components here

they can be more than 12 components here.

So let us rum EM for all these different values of K and you choose that K which minimizes

some criterion okay, and this there are different criteria that people have discussed for example it

is something like the regularization that you do in another models you basically penalize high

values of K. 

So the AIC a K information criterion is this, this is just the log likelihood +K, so minimizing this

will give you the least number of components which can explain the data well okay. There is a

BIC information criterion which uses K logn similar general idea and then are other approaches

of finding K which are basin nonparametric approaches where you assume some derive process

priors and then the method itself automatically estimates K, right.

So the algorithm that we discussed in that form was given in 1977, so you can imagine that a lot

of work has been done on EM since 1977.
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There are lot of different kinds of EM algorithms, there are online versions that work on large

streaming data sets like I said EM is designed to find local maximum, so there are annealed

versions that increases the chances of finding global maximum, the simplest solution is random

restarts but annealed does something more variation, so sometimes so in the case of Gaussian we

saw that  the E step and the M steps  they were computationally  attractable  we could derive

analytical formula for these. 

But in a lot of cases if there is time I can show one, we will see that they are not computationally

intractable and sometimes you need to do additional things. So there are variational versions of

EM, there are stochastic versions of EM, Monte Carlo version where you have intractable E

steps there is something call generalized EM which was one of the earliest algorithms were you

have computation intractable m steps.

Then when we have sequential parameters dependent parameters then there are other versions of

EM and in general EM is quite slow right, so your each step within Em with the iteration is

computationally not very expensive, but convergences usually very slow and is especially slow

when you have lots of missing data or lots of latent variables to infer okay. So there are many

approaches to deal with that these I can acceleration techniques over relaxed EM and so on. So to

summarize like what I said.
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The major advantage of EM is that it monotonically increases the likelihood it guarantees that, if

you take any distribution any mixture model or anything any likelihood computation where there

are  hidden  variables  or  latent  variables  and  you  apply  EM and  if  you  follow the  formulas

carefully you will guarantee that the likelihood is increased except at fixed points.

And it is usually numerically very stable compared to other techniques like radiant descent, it is

easily  implemented  and  the  interesting  thing  is  that  many  problems  can  be  modeled  as

incomplete data problems we saw that in the case of Gaussian mixture there is no missing data

and the beginning but we assume the latent  variables  to be missing.  The disadvantages  as I

mentioned is slow convergence and there is no guarantees of finding global maximum, and the

steps maybe analytical intractable okay. 
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Yeah, so the two standard references have very nice explanation for you and there are very nice

tutorials  also available  Matrix Cookbook you should be familiar  with to get all  your matrix

derivatives and this is these standard reference if you want to go really deep into EM McLachian

and Krishnan’s book and EM the whole book is on EM algorithm. The EM can always solve it

but it not maybe able to solve well, well lots of missing data then usually the it does not give

good. 

Right, so there is some there is lot of work on so these estimates that you are getting you may

need to, you may sometimes want to know how good those estimates are right, so you want to

get these standard errors on those estimates, so there is so in fact that is one of the flaws of EM it

does not automatically give you that but there are methods to deal with that for example, there

are some boots trap methods that can give you estimates of the error that you error estimates for

the estimated parameters.

Yeah, there also guessed so that is something you have guess based on the data that you have, so

if you take these standard r packages like M clusters or something like that they usually have

some default parameters 2 and 12 or something like that but then you can set them so when M

cluster trans and gives you like what I showed in this stimulation when it runs and tries to find

the parameters it runs it for all those different values of K and takes the best one, best one with

respect to the likelihood, okay.



So it will be a good exercise I think like if you take some different distribution so take something

like Bernoulli’s and very simple distribution and work out the math it will be quite nice to see

how it works out and yeah, even the other thing that I did not work out here, this part is also

quite simple to do yeah, assume that there is a prior and see how it works out. But the general

idea is clear right okay. 
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