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So I will be talking about Gaussian mixture models and the expectation-maximization algorithm.

(Refer Slide Time: 00:21)

So the plan is to start with introducing Gaussian mixture models and then talk about mainly how

we estimate parameters for a Gaussian mixture model and then through that introduced what

expectation-maximization  is  because  that  is  the  iterative  algorithmic  framework that  will  be

using for parameter estimation that is in general and then we will come back to Gaussian mixture

models and see how EM can be used for Gaussian mixture models and then talk a little bit about

why EM is a nice way to, what talk a little bit about theoretical properties of EM and why it is

interesting.
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So mixture models as the name suggests they are a mixture of different they are a mixture of

models like formally they are linear, combinations of simpler not necessary not always simpler

but linear combinations of distributions.  So they typically  have a form like this  these so the

density of a mixture model is a linear combination of other densities p and different mixture

models will have different forms for the probability distribution here, right. πk so let me write this

down, so because we will see this quite often.
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So the density is given by a linear combination of different probability densities and here we

have k components and each of these components have a mixer wait so this πk is called a mixture

weight or a mixing coefficient, so this probability here we can it can assume different parametric

forms the most common is the Gaussian, so when this takes when this follows a Gaussian this is

called a Gaussian mixture model, right.

And this  is  one of the most commonly used mixture model in a lot  of different  domains in

bioinformatics in speech processing you will see this everywhere. One of the reasons why it is

used is because it  is mathematically tractable but there are other nice properties too. So you

know I guess you all know what a Gaussian is but let me write it down anyway so that because

we will use this very often in the coming few slides, right so this is the form of a Gaussian I am

assuming you all know this but let us keep it.

So each Gaussian each component here is a Gaussian and each of these Gaussians have its own

parameters, the mean parameter and the covariance parameter right, and for this to be a valid

density we need the π case to be between 0 and 1 and also the sum of all the π case to be exactly

equal to 1 we can show this mathematically, okay.
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So why do we need these mixtures, why do we need these super positions of densities, so here is

an example from Bishop’s book so very, very well known data set old faithful data set on the left

so we have plotted the data set in green points it is a two dimensional data set and when we try to

fit a Gaussian this is what you get right, when you try to fit a Gaussian here. Now visually it

clearly looks not okay, because the Gaussian he is most dense around the mean but when you see

the data it does not look like the data is most dense around the mean, right.

But if we use instead of a single Gaussian two different Gaussians and try to fit to a mixture of

two Gaussians to this data it looks somewhat okay, the data is dense here and data has dense here

and it looks like to, it looks like this a mixture of two different two Gaussians would be a good

fit for this data. So let me let me show you some more examples.

(Refer Slide Time: 05:36)



 
Before I go into this let me show you some more examples right,
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So this is just some our code to generate the sample data from a Gaussian mixture and what I am

going to do is just sample and then plot the data right. As you can see every time I sample from a

Gaussian mixture it is basically here I am setting the number of components to 3 so every time it

is sampling from three different Gaussians and whenever you see this what you typically see is

this clustered kind of data, so you see class three clusters.

If I change this to 5 or 6 you will start seeing more clusters here not necessarily well separated

like this they may be overlapping as well, you see so whenever you see such clustered kind of

structure in the data the first thing that comes to mind is that first thing that comes to mind when

you try to model such data is to try to use Gaussian mixtures, because Gaussian mixtures can

nicely fit such clustered data.

So this is another figure from the same book illustration of three different Gaussians you see as I

was saying these Gaussians  need not  always be well  separated  in  this  case these Gaussians

because the mean and variance that are chosen they are overlapping right, and here you know

that when somebody is telling you that there are three different Gaussians, but when you look at

the data and try to plot the density like the fitted density it looks something like this right, and

this is the surface plot of the distribution.

Another thing that you should observe here is that this was generated from a three-component

Gaussian mixture with weights 0.5, 0.3 and 0.2 right, which means that this the red Gaussian

here is contributing most of the mass and that is again observed here when you plot the density



so this mean here is, the high the probability here is the highest and then lower for a bit lower for

the green Gaussian and the lowest for the blue Gaussian, right.

Let me show you some more examples of these densities, so again I generated from six different

components let me reduce the number of components here, 3 there you see this is an example

that  I  wanted,  so  here  there  are  three  components  but  the  two  components  are  highly

overlapping, so if you see how it was generated it was generated by one Gaussian here a second

Gaussian here and a third Gaussian here.

But when you look at the data you do not know how it was generated it  looks like this, so

sometimes  it  may  not  be  apparent  there  are  just  three,  there  are  exactly  three  different

components and when you plot the fitted density you typically see a density curve like this which

has multiple modes, right. Now this is for this is a fitted density for a three component Gaussian

you see it does not it does not necessarily have exactly three modes so it depends on the samples

that you have.

So let us see a few more density plots, you see this is the data that I generated and this is the

fitted density which has four modes let us run it again, this is exactly three modes for this data

this is very well separated three clusters okay. 
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So you might have already understood this by now at least intuitively we can formulate this as a

generative model as well right, and the generative model would be to select a component right.

Once you select a component you know you have selected the Gaussian corresponding to that

component and you know the parameters of that Gaussian and then you sample data from that

Gaussian so that would be a generative model for a Gaussian mixture right, to make it more

formal so let us take zn to be a categorical random variable right, with the probability of zn=k

being exactly equal to this πk right.

So it is a categorical random variable which takes values from 1 to k, and now suppose that the

probability of the data xn given zn=k so what is the probability of which is just this the probability

of xn given that you know the parameters for that particular component I express it as probability

of xn given θk,  θk represents the parameters. So the marginal distribution you can express it as a

probability  of  zn=k you select  the  component  and then  the  probability  of  xn given zn=k the

probability  of  xn coming from exactly  that  component.  By what  we have  assumed the  first

probability  is  just  k  and  the  second  probability  is  probability  of  xn given  θk so  this  is  an

equivalent generative formula with an explicit latent variable zn.
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And we can represent this graphically the shaded circle here is the observed data this is the latent

variable the latent variable is governed by the parameter π and xn is generated once you know the

latent variable it is generated by known parameters corresponding to that latent variable. So if

you have to generate data from such a model you first sample zn from the categorical distribution

which is just so the categorical distribution is a special form of multinomial distribution with

parameter 1.

And so that once you samples zn you get the kth component with parameters θk and then you

sample xn from that probability distribution, so in our case this is Gaussian but it need not be

Gaussian it could be exponential it could be any complicated probability distribution right, so is

it any questions please ask me if there any questions. Could you go to the pervious slide again,

could you explain is that?

So the probability  of xn so we are just  getting the  so we are assuming that  there  is  a  joint

distribution and the marginal distribution can be written down like this you for each of the k

components  you  take  the  probability  that  probability  of  zn being  equal  to  k  and  then  the

probability  of xn being generated  from that  component  so this  is  exactly  what  the graphical

model  represents  right,  if  you  write  down  the  probability  distribution  represented  by  this

graphical model it will be exactly this except that there is a sigma n term that takes care of all the

different data points.



But for a single data point it  is exactly this you are choosing a component  and then choose

choosing  the  you  are  sampling  the  data  point  given  the  distribution  parameters  for  that

component right, so before I go into that this is just so remember this is another distribution one

use of it as I just showed is to model clustered data but you can also model other kinds of data

with it. For example, so let us look at another data set I got this from the web.

(Refer Slide Time: 15:25)

So here is the density curve from the fitted density curve for some data set which is records

precipitation in some false I cannot pronounce it also snoqualmie falls okay, and so suppose we

want to model this density right, we can we can model this with a Gaussian mixture and let us

see how it looks when we do it with the Gaussian mixture with two components right, so we are

trying to model this with a Gaussian mixture this is one Gaussian and this is another Gaussian

okay, does not look like it is modeling this well, but we can increase the number of components

and when we use nine components take some time and there you see it is getting closer and

closer to this distribution right. So Gaussian mixture with nine components because each of these

Gaussians have different means and covariance parameters is modeling this reasonably well.

So Gaussian mixture by that way is very versatile it can model a lot of different distributions by

just choosing the right number of components and choosing the parameters appropriately, so it

models not just clustered structure yeah, yeah you do not know that is, so that is the parameter

estimation task right, when you want to estimate when you are fitting the model you want to



estimate what the right number of components is and you want to estimate what these parameters

are right.

So if you are just given the data you do not know what those parameters are and that is in fact

going to be the bulk of the lecture, how are we going to estimate the parameters. 

(Refer Slide Time: 17:47)

Alright, so whenever you see this actually I think I am going to keep this model handy here.
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So it would be very good a few sort of keep this model in your mind as we go through the

lecture, because all the different all the math that we will see will sort of start making sense when

you  have  this  model  in  your  mind  right,  so  when  I  talk  about  some  formula  like  this  the

probability of xn being equal to σk this probability times this probability you can see that it is just

the probability of xn being generated and the generative model is usually more easy to think with,

so the generative  model  would be that  I  choose the  component  and then  once I  choose the

component I choose the corresponding parameters and generate this xn.

So these components if you are doing a clustering task they are just the cluster labels right, so

suppose you have three clusters and you want the cluster labels and if you fit a Gaussian mixture

model there these components the component values 1,2,3 would just become the cluster labels

in  that  case  okay,  so  this  would  be  a  probabilistic  way  of  doing  clustering.  Alright  so  the

probability of zn=k equal to k probability of zn the latent variable or the cluster label taking a

particular value is the prior probability of the data point xn coming from the component k okay.

Now suppose you are given some data set like the data set we saw from snoqualmie falls or

something, suppose you are given that data set and then you are asked to find what is the label zn

for the corresponding data point right, so what I mean is suppose you have data points here.
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You have two clusters and if you knew how it was generated then the cluster label for all these

points would be say 1 and the cluster labels for all these points would be 2, right but you do not

know this you do not know how the data was generated okay, so you once you, once you have

given this data then you have to infer what these parameters are and you have to infer given that

this given that you are using this model to fit you have to infer what is zn value is for each of the

data points.

So the zn values for all the data points in one component will have the same value 1 and the z n

values for all the other data points in the other component will have the same the other values

and equal to 2 of course in the for clustering it can be interchanged the exact value does not

matter, right. 
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So this probability the posterior probability of the data point xn coming from component k is so

important that it is given a name of its own is called the responsibility I am going to write that

down as well, because we will you use it again and again and again. So important that it is given

a name of its own is called the responsibility I am going to write that down as well because will

you use it again and again and again oh, he asked me not to use this  the posterior.
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Probability  of  zn  =  k  given  the  data  right  and  it  is  also  called  the  responsibility  it  is  the

responsibility of component k for xn right, so till now the way I have described it is that there are

these different components and only one of these components is responsible for giving rise to

that data but that is the generative point of view right, but if you look at it probabilistically each

of the components is contributing something to that towards the probability of that data point and

that contribution the weight of that contribution is given by πk.

So your clustering need not always be a hard clustering of this component versus that component

it can be a soft, clustering where each the cluster label can be probabilistic so it can be cluster it

can be cluster label 1 with probability 0.5 cluster label to with probability 0.3 and so on right so

when you express it as a probability then you get the option of doing both hard clustering as well

as soft clustering so now you can use Bayes rule to get this formula for the responsibility.

So this is straightforward and with so and when you substitute for probability of zn =  k which is

the prior you get πk here and the probability of xn given that you know the component again

keep this in mind given that you know the component is the probability of xn given θ k the

parameters for that component it so let us write this down okay, so observe that you do not know

the responsibility values until you know all the parameters you need to know all the π case and

all  the  θ  case,  which  in  the  case  of  Gaussian  is  all  the  µ  and all  the  σ  case  for  all  the  k

components and of course you need to know k to know the responsibilities, so let us see another

very interesting picture.



(Refer Slide Time: 25:26)

When you are generating  the data  here he is  again  from the same book is  generating  three

different Gaussians the red, green and blue Gaussians and of course you do not know how the

data was generated when you see the data you see something like this okay and then you try to fit

three Gaussians into 3 a mixture model with 3 Gaussians 3 component mixture and what he has

done  is  he  has  colored  the  responsibilities  right  so  all  these  guys  have  been  given  the

responsibility corresponding to component one.

Or competent red here these so the blue comp blue component is responsible for all these data

points green component for this and here you see in the border it is a mixture of green and blue

depending on what probability values area sign, right so this is one example of soft clustering

these values these data points are not assigned completely to either  green class to the green

cluster or to the blue cluster and you can see there are mistakes in influence because of course if

you do something like a maximum.

Likelihood estimates these will be most likely from this from a single Gaussian right and these

blue points and these red points will not be identified correctly alright.

(Refer Slide Time: 27:10)



So now suppose you are given data you want to fit a Gaussian mixture model to it to either infer

the clusters or to just fit the density for either case you need to estimate the parameters, and what

are the parameters if you have P dimensional data k components for each of the Gaussians we

need to find out the k mixing coefficients.
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We need to find out the mean parameters the mean vectors which are P dimensional and we need

to find out infer the covariance matrices, right so for now we will assume that mean okay and I

will come back to how k is estimated later yeah for now we will just assume for example we see

data like this and we decide that k is going to be 3, it need not be the case but yeah and from this

one from here itself  you can see that  this  is going to get difficult  on high dimensional  data

because the covariance matrices are going to scale quadratically with dimensions.

So as  the  dimensionality  of  the data  increases  your  influence  task becomes  more  and more

difficult right, we will keep we will not worry about that right now so how do we estimate these

parameters will take the standard route of maximum likelihood the likelihood is just given by

this for the case of Gaussian mixture model with k components this is for all the n data points

and we take the logarithm which will convert this product to a sum here the problem is it will

only convert this to a sum the inside summation remains.

So what you get when you look at the log likelihood would be would be the ∑ of n different log

logarithm terms we are inside each logarithm there is a summation and this turns out to be this

gives us a lot of problems, so if you go by just differentiating this and getting you are equating it

to 0 the standard route what you probably did for normal distribution this summation is going to

cause problems and you are not going to get a closed-form solution because you cannot easily

differentiate  this  and  that  is  one  of  the  main  problems  for  estimating  the  parameters  of  a

Gaussian mixture.
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All right but just to play with the math let us still do it let us take the derivatives but we will

make one crucial assumption, one assumption which is that we know the responsibility terms let

us see how it works out so we have the we have the log likelihood and then let us say we want to

find out each of these parameters the standard maximum-likelihood ways you take one of the

each one of the parameters start with µk and take the derivative equate it to 0 and then see what

you get by doing some algebra so let me just do this.
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Right this is the log-likelihood and what we want to do is find the partial derivatives with respect

to µk first, so this ∑  just remains outside and log of this would just give us the whole thing

below whatever is inside there then we differentiate this part, so we also this let us write it down

it is these are constants σk is a constant here with respect to µk and then we need the derivative

of this derivative of an exponential would just be an exponential right, and this times so what you

get you get back the entire formula for Gaussian here.

Multiplied by the derivative of this complicated term here let us change the I am just changing

the this is, so what I really want to say here is when you do this derivation what you will find

here if that this term comes up and this is the same as the responsibility term this is what I have

written  here  and then  the  rest  of  it  is  just  algebra  there  is  a  very  nice  book called  Matrix

cookbook where you will find all these derivatives complex matrix derivatives and you can see

that the derivative of this term.

 X-µk inverse x σ inverse times x - µk is nothing but - 2 times the – 2 σ inverse times x - µk

when and the covariance matrix is symmetric, so you can just substitute that here in continue and

what you get is σ and k  how did it x so what is it – 2 times σ inverse so this ∂l / ∂µk just gives us

this and when you equate this to 0 you can x σ k on both sides and finally turns out that you will

get a very nice form µk = σ γ z and k times X n so what does this mean the mean that you have

that you have inferred is the weighted mean.



Of all the data points where the weight is the responsibility right so remember we do not know

the  responsibilities  we  have  assumed  that  we  know  this  but  the  responsibility  has  all  the

unknowns inside it has π k µk and σk all of it is unknown we just assumed that we know this and

we substituted it and did the math right and we got a nice, form for µk we can do the same math

for σk again if it differentiate this with respect to σk we will we have to just use two different

matrix derivative formulas.

These it is very simple the derivation is very simple do you want me to do it so I thing okay and

again  you get  a  reasonably  nice  form for  σk provided  that  you assume that  you know the

responsibilities or the kth cluster is given by the weighted mean of all the data points where the

may the weight is nothing but the responsibility, responsibility of that cluster towards this data

point responsibility is the posterior probability of the latent variable given that you have this data

so essentially it is trying to capture what generated that data point.

Which of the components generated that data point right, so all this is just so right now we do not

really have anything we do not have the me the main parameters right, now we just know that if

we knew the responsibilities  which you do not know we could get a nice form for this  and

without this assumption this derivation does not hold okay and the same thing with respect to

with respect to the σk values when we take the derivatives with respect to πk we have to be

careful.
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We have to make sure that we use the constraint the remember σk the sum of all the σ case must

be equal to 1 so we cannot directly differentiate this right you have to use Lagrange multipliers is

everybody familiar with the Lagrange multipliers requires yes no okay, so then you just take a

Lagrange multiplier here take this constraint and do the differentiation you again get you again

get back the responsibilities so every time you do this derivative you see the responsibility bring

up and if you set this to 0.

We can get the parameter the γ parameter as - n and we get the value of πk equal to again this

proportion this  proportion again is  intuitively  very clear  what  it  is  saying is  πk the mixture

weight is the proportion so if you take the sum of all the responsibilities overall data points over

all components it is equal to n right and, so the k th mixture weight is nothing but the proportion

of the responsibilities that are coming from the kth component towards all the data points and you

are taking the proportion that is given by that by those responsibilities with respect to all of it

some of it.
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So let us summarize what we found is that we have very nice forms from you k σ k and πk a

given that we know the responsibilities which is the posterior probability of the latent variable

coming from that company coming from the k component for the nth data point, so can so can

you think of can you think of how you can use this to create an algorithm for estimating the

Gaussian mixture parameters in your exactly, yeah so this is our first case we start with some we

initialize all.
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So I will denote by curly θ all the parameters and we start with some guess some gas of the

parameters and then we will compute the log likelihood we can compute it because we know we

have guessed the parameters and then we will set the responsibilities because we know again all

these all these parameters are guess and since given the responsibility we can compute all the

parameters  again we will  use this  to get a new guess and that  way we will  iteratively keep

refining our guess.

Now this looks very ad hoc but is actually is actually theoretically quite sound and this is we will

see that why the reason why this is a good thing to do is we will show that this is guaranteed to

increase the likelihood at every iteration and we will see that when we understand why when you

understand how EM works so this turns out to be actually an instance of the am algorithm it is

quite is very intuitive.
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So if you so this is an example of exactly that algorithm we start with some data the same data

set  we start  with  some guesses  for  the  Gaussians  and iteratively  we see that  the  Gaussians

converge to nicely fitting the data the parameters that you get here will fit the data very well the

only problem is that it will take it usually takes a long time to come to the right parameters yeah

we know the k till  now we know the K we are so in  this  whole iterative algorithm we are

assuming that we know the k.
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