
NPTEL

NPTEL ONLINE CERTIFICATION COURSE

Introduction to Machine Learning

Lecture-61
Gradient Boosting

Prof. Balaraman Ravindran
Computer Science and Engineering

Indian Institute of Technology Madras

(Refer Slide Time: 00:16)

Right, so I want to talk to you about the interesting idea known as gradient boosting. So all of

you remember what boosting is about right. What is boosting? What is bagging? Boosting yeah,

so boosting is specifically a stage wise process where at every stage you try to boost the

classifier from the previous state says that the error is minimized right, error is reduce not

necessarily minimize, but the error is reduced right.

So that is a characteristic of boosting, so at every stage you have to look at the errors from the

previous stage and you are trying to reduce that right. So we looked at ADABOOST right, one of

the most popular boosting algorithms. And then I told you that ADABOOST uses exponential

loss and that it is related to the logistic loss, and so you can actually use the logistic loss function

and derive a boosting algorithm which is called logit boost right.

But it is very similar properties to ADABOOST, but ADABOOST is more popular especially

from analysis point of view and things like this, because it is not really nice properties okay.

There is yet another approach to boosting that is gaining a lot of currency recently it is called a

gradient boosting, at not well recently would mean in the last decade or so right, compared to

ADABOOST which is several decades old right.

So sometimes they even call it gradient boosted decision trees right, gradient boosted decision

trees, because you use this specifically in conjunction with trees right. And in fact in many

applications now gradient boosted trees are actually getting hard to beat right. And so, we just

reintroduced some notations that you might have forgotten right. So I is an identity function

which is 1 if X belongs to Rj is 0 otherwise right.

And so, this is summing over all regions so R12 RJ and γj is essentially the output I am going to

produce if x lies in RG right, this is the regression tree thinks. So what is my θ here it is all the

RJ is the specification of the RJ and the γJ is for each of those region. So that is my θ. And

typically we pick some loss function if it is regression it is going to be squared loss and then

right.

So I look at the loss incurred when the actual output is YI and the output I am giving you is γJ, so

for all data points X that belong to a region RJ the output will be γJ, so this is essentially the loss

there and sum this over all regions and this is the rectum just recapping the decision trees for you

right. And then we looked at greedy methods for finding RJ right, and given an RJ we knew how

to fit γJ right, so given that we looked at some greedy search methods right.

So you can do, you can do boosting with trees also just like you did boosting with other

classifiers you can do boosting with trees right. So I have M trees so essentially it is taken some

of the output of all the M trees that gives me my boosted tree right, remember that I mean this is

not a single tree okay it is now a forest, then I have a correction of trees a collection of trees is a

forest right.

So it is actually a forest, so I basically do that and the difference here is can people at the back

see this right. So this is essentially when I find the parameters for the m th tree right, so I am going

to look at the classifier or the predictor that is formed by the first M-1 trees right. And then I am

going to find that tree okay, whose output I will add to this predictor right and you search for

computing the loss right.

So for every data point in my training data right I look at the way I look at the output produced

by the m-1stage 3, I look at the value that is added by the mth tree so this is the output produced

by the mth tree I look at the value added by the mth tree to that right. And then I will compute the

loss function okay make sense yeah.

So the basic area is that every point this is just forward stage wise addition that we like whatever

we did before introducing boosting right that is exactly that. So now this becomes boosting

because I am explicitly trying to figure out what the residual error is from here okay, and trying

to adjust for the residual error using my tree the new tree I am learning right. So when will it be

the residual error, when it is a regression task and squared error is my metric right.

So and the loss function is squared error right, and I am so trying to solve the regression problem

right, then essentially what I will have to do here is take the residual error. So whatever the tree

does not explain the m-1 stage tree whatever that does not explained, so that error I will have to

explain using this right. So if you think about what we are doing here, so you will first build one

tree to predict your output as best as possible right.

The predictor function as best as possible will build a tree, then what you will do is okay you will

take the residual of that, build another tree that predicts the residual as well as possible and add

the output to this okay. And then take the combined thing find the residual of that build the third

tree which will predict the residual and add it back to this and so on so forth, you just keep doing

this right.

So that is essentially what boosting increase means, so you still not come to the gradient boosting

part okay. So finally it will look very similar to what I am telling you now, but we have still not

come to that part yet right. So as with regular decision tree learning given the RJ's right finding

the γJ’s is easy given the RJ’s finding the γJ’s is easy right. But the problem is finding the RJ's in

general it becomes a little tricky finding the region's becomes a little tricky, because I have to

take into account the other tree's output also right, in general right.

But I am talking about squared error it is very easy, because things nicely decouple right when I

am talking about squared error I do not have to worry about FM-1 after I compute the residual

right. The residual could have been generated by any classifier any regress righty, it does not

have I do not even have to worry about the fact what generated the residual was actually a tree

right, I do not have to worry about it, all I need is just the residual.

The residual then becomes any function right, so with squared error boosting becomes just like

learning a series of decision trees, nothing special about it. But if you have other kinds of loss

functions then we will have to worry about how to accommodate it, but at least in this case of

squared error loss okay.

(Refer Slide Time: 10:24)

So that is essentially your target function right, and what will be the γhat that you will need just

be the average residual error in the Jth region right. Any questions, so in fact there is another case

where it becomes simple which is essentially, so for two class problems and exponential loss

functions what you think we get, it becomes exactly the same as doing ADABOOST with trees

okay, the two class problems.

But, so it turns out there are tricky things here right, so if there is if it is a multi-class problem

okay then things do not decouple as nicely. So if you have two class problems and your loss

function is exponential loss okay you can show that this is essentially the same the computation

that we are trying to do here right that minimization everything that we are trying to do here

essentially reduce to the same solution that you get if you did the ADABOOST derivation on

decision trees okay.

But these are the two cases where this thing simplifies that for example, if you are trying to use

deviance as a loss function then things do not decouple this easily okay. So these are things that

you have to keep in mind, so this is one part this is essentially telling you how to do boosting

with trees the regular way okay. So let us look at something else now, so I suppose I have some I

have some differentiable loss function some loss function which is which I can take the

derivative of right.

So if I want to do, so if you want to take a numerical approach to optimizing this kind of a loss

function typically what will I end up doing I will start off with some guests for a solution right

take the gradient of the loss function with respect to the parameters at that solution point we will

number gradient descent right. Then I will compute the gradient and then I will move in the

opposite direction of the gradient then I will move a small step in the opposite direction of the

gradient go to a new place and compute the gradient again and then move again and so on so

forth until I converge to the right answer right.

So if you think about what this is doing this is something like okay take initial solution okay,

then I add another solution to it which is essentially the gradient times something then I add

something more to it, so I will add something so essentially the solution I am computing finally

this is a sequence of additions that they have done on the basic solution I started off with right.

So even though one way of thinking about it is at every point I give you a parameter vector, but

the parameter vector itself is composed of a sequence of additions. So I can think of it as first

starting off with initial guess for my parameters, then adding something more to it, then adding

something more to it, then adding something more to it, and adding something more to it, till I

come to the final answer right.

So that is one way of thinking about it, so let us try and write this down a little formally. So now

I am going to see what I can do about this f is for the time being ignore the tree constraints I will

come back to the trees later, time being let us ignore the tree constraints right. So what I really

need is, so just when I am trying to do this in a numerical fashion I am just operating with a

single data set right.

So when I say f what I really have looking at is a point in RN, so what does that mean let f really

means okay what is the value of F at X1, what is the value of F at X2, X3, X4 all the way up till

Xn so when I impose constraints on F, then I will be restricting the kind of vectors I will see. But

in general when I am talking about F in this context I just mean like an n-dimensional vector

right. So you can think of it as a point in n dimensional space right.

So typically what you do is you start off with some solution right F0 you start off with some

solution let us call it H0 right. So you can think of it like this I start somewhere here that is my

F0 right. And then, I compute the gradient and move in the opposite direction right, so I take a

small step in this direction so I come here that gives me a new set of parameters right. So this is 1

θ, this is another set of θ and this will give me another F right.

But instead of saying that this will give me another F, so I am going to say that okay this is one F,

then I add something to it right, so that gives me the second F. So what I am actually computing

in every step is the amount that I add to the previous solution to derive my new solution okay. So

I am confabulating θ and F here, so what I have here is θ corresponding to every θ I have here

there will be a F right corresponding to every parameter setting I will have that will be output

vector F right, when I change θ this values will change right.

So when I am here I have one solution right, so when I want to go to here that essentially means

that whatever F vector I have here I will have to change each of those coordinates by some value

so that I will end up here right, those values I change the coordinates by it is my H vector right,

is it clear what we are doing here.

(Refer Slide Time: 18:58)

So what is the normal mechanism by which we will do this right, so I have been using the same

example so far right, so steepest descent is something that will pop up right even the other ways

of doing this optimization right. But steepest descent is the one that we are all familiar with the

one that I have been using as an example here so far right. Since I have not chosen any arbitrary

parameterizations to form a θ right for the F, I have not chosen any parameterization θ or

anything right.

So the parameters of F are the output set each one of the input points see the way I characterize

my function F is looking at okay, what will be the value of F at X1, what will be the value of F at

X2 and so on so forth right, I do not have any other parameterization for it. So instead of finding

your δL/δθ you actually find that I am writing it as δL/δF okay. So F(xi) is essentially the output

of F at Xi and what is F here, it is Fm-1, because I am determining the M stage I am looking at

the m-1 guess for my function right.

So the steepest descent direction would be saying that okay, so GM is the direction in which you

have to move, because that gives me the direction in which the or rather -GM is the direction I

have to move, because that gives the direction of steepest descent. And ρm gives me the step size

I have to take in that direction how larger step I can take in the direction. So how is flow I am

determined you should look very familiar right.

This is exactly how we did the ADABOOST derivation. Now people are think about it really

ADABOOST derivation like this yes, we did go back and think about it okay. So very similar not

exactly the same thing, but very, very similar the exact the same steps that we did right we first

found out which way we have to change it right, and then we found out what the step size should

be, and the way we did it was okay, I have already have a classified till m-1 stage okay, what

should I do at the M stage.

So as to minimize the error, so this is exactly what we did the idea behind each of the steps are

same the mechanics might have been slightly different right. So once I get this then I do okay,

right is it clear people are doing so far right. So whatever we are trying to do right, is nothing so

there are two different parts here okay, if you people are getting confused so the first part here

talked about boosting trees okay, the second part here talks about taking some differentiable loss

function and trying to do some kind of a stage wise process on it okay.

Now I just took your normal gradient descent procedure and told you that you can think of it as a

stage wise process, I guess like we did with boosting we can think of it this additive model right.

So whatever you will learn here right, so now the thing is how we connect up the two will

somehow account for that later. I do not want to erase anything from the board because what we

are doing right now is connecting the two parts right. So I do not want a raise anything from the

board, so you can see both that and this well we are looking at this right.

(Refer Slide Time: 23:48)

So far so GM, GM is some kind of an unconstrained maximal descent direction I do not have any

constraints on f for anything else right what is the maximal descent direction and essentially get

GM. So now what we are going to do is to say that hey, all of this is nice, but I would really like

some parametric forms for what I am doing right otherwise things become too complicated. So

what I am going to do is I am going to fit a tree.

So what I want to know is GM right, so if you think about it, so I really need to compute GM and

instead of doing this in this arbitrary unconstrained form I am going to build a tree that

approximates GM as closely as possible okay. So you should note something here what is it you

should not, so for all this while I have been very carefully writing L for the loss function well I

am trying to keep this as generic as possible right.

But here I wrote a squared error loss function, because it does not matter what is the problem that

I am trying to solve, it does not matter what this loss function is okay, because what I am trying

to solve now is trying to approximate a vector I trying to approximate a direction right by a tree

essentially I am always solving a regression problem here right. So if you think about it GIM is

going to be some kind of a vector right GIM will be some kind of a vector all I am trying to do is

predict the value of that vector component right.

So I am just doing regression regardless of whether my original problem was a classification

problem or a regression problem or what not, I could use any loss function here and I could use

any loss function here this is the crucial difference you should appreciate right, for the actual or

actually solving the problem that I could be using a different loss function here okay. But when I

am building the MX stage decision tree all I will be doing is regression, because all I need to

predict is what is that particular gradient descent direction for that input value Xi right.

So this is what I am going to do, how am I going to go about doing this. Well it depends on what

this loss function is okay, so is this loss function, so if the problem I am solving is a regression,

this is what I am solving, this is the squared error loss function okay, this is not this okay, this is

that. So if this L is squared error okay, then what do I get here is essentially what is this, give this

is GM essentially the gradient of the loss with respect F(xi) right, the gradient of this with respect

to F(xi) is essentially the residual Yi-F(xi) right.

So this is basically –GF if you would think correct. So now what happens if I am doing

regression with squared error loss function and I am trying to do this gradient boosting right. So I

am trying to build a new tree that predicts the direction of the gradient what do I end up doing, I

end up predicting this is the residual right. So I end up predicting the residual and here what we

said, if you are doing the squared error loss pick the tree that best predicts the residual.

So that was derived from just the basics of boosting regular boosting. Well here I am talking

about a technique that can do boosting on trees regardless of what is the underlying loss function

right, but it does boosting using trees okay. So that is a cool thing about gradient boosting right,

so you always are solving a regression problem as far as the tree is concerned, and solving

regulation problems using trees is very easy right, your solving regression problems using tree is

always regardless of this loss function.

If you remember when we are deriving this boosting update I said four squared error and for two

class exponential loss the boosting form is easy right. But now if you busy doing the gradient

formulation of it okay regardless of what you are doing with the loss function you can still do

boosting with trees. So that is why gradient boosting decision trees have become very popular

now, because you can do all kinds of cool stuff with it.

So what about this right, and suppose you are doing classification let us take deviance as the loss

function right, we will remember deviance, we looked at deviance multiple times right, and turns

out that. So what is this, if the ith class is GK, then it will be 1 minus that the data point Xi is in

class K, the probability of data point XK belonging to class K. So it will be 1 minus that, and if

the actual class is not K right, then it will be minus probability of Xi belonging to class K okay.

So this is like the ith component of it, so ith component of –gi okay. So again what I have to do, I

have to take this expression plug it in here and do regression again, I will take this expression

plug it in here and do regression right. So all you need to do is figure out what is the derivative of

your loss function with respect here F(xi) right, and then once you find out the derivative you

just do the regression with respect to that for each stage in your decision tree okay. So what will

be my γJ this is γJ, such γ, γJM, what will be γJM? So earlier we said it will be just the average

residual error in RJM right.

So in this case it is going to be so once I have found out what the actual regions are right, once I

have found out what the region. So this is going to give me the regions right, so once I find out

what the actual regions are I will do the following. So what have we done here okay. So earlier

when we are finding out the, when we are building decision trees right, so the way we found out

the regions right.

If you remember the way we found out the regions was we postulated a split point right, and then

for that split point we figure out what is the best γ in both half of the tree right, and then we took

a value for that, and then we kept looking at all the possible split points right, the splitting

variables and split points for all the possible combinations and for each one of them we evaluated

what the resulting residual error would be right.

And based on that we pick the split point, so here we are doing something different when we are

splitting picking the split point right, we are going to pick the split point such that the residual

error in predicting the gradient is minimized right. I am only predicting the gradient here, the

residual error in predicting the gradient is minimized. But when I finally decide what is the

output that I am going to give in each of the final regions right.

So in the regular decision tree building by the time I come to that point I would have already

solved the optimization problem right. So I know what is the solution that I have to give and it is

the one same thing which I use for splitting criteria. But in this case when I finally give the

outputs I am going to look at the loss function right of data points that fall in that region look at

what is already existing that is Fm-1 of Xi right.

And look at what I need to add to bring up the output, so that the loss is minimized. So whatever

is the loss function, so when I am doing the loss function here I will no longer be using the

squared loss I will be using one of these, I mean this is quite loss I could be using the absolute

gloss or I could be using deviance or whatever is the measurement that I want right, I will use

this loss function the loss function I use there, I will use that here in order to figure out the

outputs okay.

So you let this sink in a little bit, so it is actually a pretty cool idea right. So I have somehow

come up with a mechanism where I can use decision trees in a very powerful way, because

finding regions while I do regression is very easy with decision trees, because we know how to

use squared loss and there are lots of tricks and optimizations that you can do when you are

searching through with square loss right.

Now we looked at some of them, but there are many other things that you could do so what I am

going to do is for all my tree growing part right I am just going to use the regression trick right,

and I finally have to give an output at that point I will use whatever is the true loss function I

want right, that is why it is called gradient boosting. So I use the gradient at every point to boost

my performance right.

So the way I fit my, so if we think about it this might not necessarily be the most ideal way of

doing things why is that right. So if I want to predict γhat JM that truly minimizes forget about

the RJ's right, that truly minimizes the loss function I might want to actually split the space in a

different way right. But I amusing the gradient information to split the space, then whatever

splits I get whatever regions I get by using the gradient information I am using the same regions

in order to reduce the error also right.

It is fine as long as I am unconstrained right, as soon as you put in the constraints of trees it is not

entirely clear that the tree that you want for getting the representing the best γhat is the tree that

you want for representing the best GM it is a very, very settle point you have to think about it a

little bit. But more often than not it turns out to be fine okay, but there is really no guarantee that

the best three for predicting GM is the best three for representing your γ’s okay.

That is two slightly different things, but still it turns out to be fine right. So all of this discussion

collapses if you move to L being the residual, I mean the squared error right, L is squared error

everything looks the same you already solve it here is a very easy thing to do. But what I want to

point out is, it essentially the same squared error mechanism you can build boosted trees for any

loss function that you want, it can be regression, it can be classification.

So whatever it is you can build a decision tree. So one thing that you have to be careful about is

that you do not over fit the things any time right. So you have to be careful about not over fitting

the data, because you are only working with the n data points always right, you can build a very

complex tree that will try to over fit the gradient for just the training data right.

So that is not a good idea, so try to keep your tree down complexity of your tree down. In fact

quite often people choose the size of the tree a priori. And then, you might actually end up

adding more trees than necessary because he chose too small a tree, but at least you will avoid

over fitting right. And so that is it for gradient boosting.

IIT Madras Production

Funded by
Department of Higher Education

Ministry of Human Resource Development
Government of India

www.nptel.ac.in

Copyrights Reserved

http://www.nptel.ac.in/

