
NPTEL

NPTEL ONLINE CERTIFICATION COURSE

Introduction to Machine Learning

Lecture-60
Boosting

Prof. Balaraman Ravindran
Computer Science and Engineering

Indian Institute of Technology Madras

Okay, so with one of the most popular and most some sense mind blowing thing with the non-

thermal method space right, so boosting in fact the original boosting work original analysis of the

boosting work comes from theoretical  computer  science community  not  necessarily  from an

empirical mission learning community right, so therefore they were that they looked at having

some oracle that had a probability slightly greater than 0.5 of being correct right, and then they

try to see how you can get better and better predictions from somebody who is just above 0.5

okay.

By combining many, many search Oracle's right I can keep improving my accuracy of prediction

arbitrary close to 1 right, so that is the amazing part right I start off with each individual predictor

as accuracy of 0.5 plus some epsilon just better than random that I can combine a lot of them

together and produce something that as accuracy close to 1 right, so this was a very big result

that came out earlier and so we are going to look at some kind of simplified version of it, so they

remember the goal that distinguishes I mean the main thing that distinguishes boosting from the

other methods is that boosting is inherently serial okay.

So boosting is going to build this ensemble classifier in an incremental fashion right, where at

each stage I am going to try and explicitly reduce the error produced by the previous stage, so

this is something that you have to keep in mind you just cannot write it just cannot come up with

some ensemble method and call it a boosting method and I have seen that happen in many papers

that  I  have  reviewed  people  just  write  something  that  has  multiple  classifiers  in  it  so  it  is

boosting, because they have read somewhere that boosting is a very hot area and people papers

in boosting get accepted so they come up with any classifier and the any ensemble method and



call it boosting, boosting has this very specific property that at every stage right, you add one

more classifier to the existing ensemble right, and this is done in such a fashion as to reduce the

error produced by the classifier up till that point okay, makes sense.

Sorry, you get the choice as to what to add next right so that is that you choose it such a way that

you minimize the error that they have not at least you reduce the error okay, so not necessarily

minimize but you reduce the error of whatever has happened the prediction till that point okay,

does it make sense, so that is essentially what boosting is sometimes you can think of it as error

boosting, sometimes they call it as error boosting and so on so forth.
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The one very popular and one of the original boosting algorithms is called ADABOOST   okay,

so let us and it is going to I am going to put up a tutorial for you guys to refer to okay I will use

the notation from the tutorial so I will not translate it to the notation in the text book okay, so

when you read the textbook you have to do the translation yourself, so that is one of the main

problems when you have too many different  disciplines contributing to the same field right,

machine learning has people from computer vision, people from statistics, people from AI and all

other disciplines contributing to it and each one of them brings their own notation to the mix,

right.

So  it  becomes  harder  to  keep  track  of  everything,  but  currently  the  I  output  is  necessarily

complicating my dress okay, so I am going to denote by C subscript x the (m-1)th stage classifier



okay, that is obtained by basically adding the outputs of all this individual classifies so α1, α2 to

αm-1 right, so I am going to add up these are the weights and k1 is a classifier that I added in the

first stage right, k2 is the classifier added in the second stage and so on so forth and k m-1 is a

classifier added in the m-1 stage okay.

And then basically I want to produce that okay, yeah, the rest of the class, so there are a couple

of things which I should point out here one of the most obvious ways of doing this forget about

Erebus one of the most obvious ways of doing this is to say that okay I am going to take this guy

right, look at the residual error you know I can think of this as a prediction problem right, and

look at the residual error of the predictor right, and then train a classifier km to minimize the

residual error, right.

So what will be αm, essentially how to make sure that this whole thing is along the direction of

the residual so we talked about this earlier right, when where did we talk about this, forwards

stages we ask stage wise or step wise, stage wise, so when we talk about stage wise feature

selection we talked about something similar right, so you could think of something along the

same lines here instead of thinking of selecting features right, I am just selecting classifiers right.

So I can just take the residual error of cm-1 and then use that to train km(x) and then add it here

right, in fact this can be one, it can be one does not matter because the km(x) will actually align

itself in the direction of the residual so I can just add it here so it is fine right, so that is a simplest

way to do this thing and it is actually a good way to do it if you are doing regression let that

make sense and I can take this as they can take the residual error and then train my km to actually

go in the direction of the residual.

So I can actually do this, so you can get a boosting like algorithm for regression just by training

it along the direction of a residual right, but when I am doing classification that is not necessarily

the right thing to do so people come up with different kinds of loss functions and then they try to

improve the classification,  so the loss function we look at  is the exponential  loss, so people

remember the exponential loss, I talked about it when we are doing SVM's is exponential loss

okay, eyif(xi).

So we looked at the exponential loss earlier so we will essentially continue with that, so I will

sum over all the training points right, so that is the exponential loss for the m th stage classifier



right,  people agree with me on that,  so that is essentially what I wanted to write right,  now

expanded the cm and I have written it as this expression in the bracket here. Yet, can people see

me at the back I see not me but the I am kind of hard to miss right, that makes sense okay great.

So this thing we already know right, so there is no control we have over that that thing we

already know that is given to us all we need to find is αm and km right, so I am going to rewrite

this as what is that, that is the last function we are going to be using like that is exponential loss

function so for classification  we looked at,  if  you remember  we looked at  the different  loss

functions and when we looked at hinge loss right, and I said exponential loss is one of the loss

functions and this is how we defined it so essentially I am using that exponential loss function

here.

And in fact I mean this was not the way ADABOOST was originally derived okay, ADABOOST

was  derived  in  a  completely  different  way and later  on  about  five  years  after  they  publish

ADABOOST they kind of discovered the connection between this kind of stage ways modeling

right, forward are additive stage wise additive modeling and exponential loss they said okay, I

can  do  forward  stage  wise  modeling  with  an  exponential  loss  function  I  end  up  with

ADABOOST that connection was discovered five years later.

But  now  almost  always  people  except  in  the  theory  community,  in  the  machine  learning

community is always introduced like this okay. So where wmi is sorry, m the same thing I wrote

here, so the weight of the ith data point at the mth stage right, the weight of the ith data point at the

mth stage is essentially e-yicm1(xi) right, so what does this mean what is exactly this expression if

you think about it, it is a loss I have incurred on that point x(i) up till the m-1 stage right, that is

essentially the right just the loss that I have incurred on the ith data point up till the stage m-1

right.
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Okay, now I am going to break that sum up into two components, so do you think of these two

components,  no,  no,  no this  is  varies  say  eαm so  when will  I  get  e-αm when I  am correctly

classified it, when I will get eαm when I am misclassified it so these are all the data points such

that right you are the correctly classified data point is all the miss classified data points right, is

intuitively you can see where we are going with this, so what is the best classifier that I can find

at the mth stage.

Well, obviously the best classifier can find the one for which this ∑ is empty the right, and get

everything correct classified correctly so that is the best classifier. But now increase the cracks

right, remember our classifiers are all weak classifiers and exactly that is a basic assumption we

are starting off with right the classifiers are all weak classifiers I can do only slightly better than

random, so I have to get nearly half the data points incorrect, right.
So which half should go here which half should come here, and then we can move one data point

from to here that here to make it better than half, so which half should go here which half should

come here intuitively you tell me, which will incur less penalty, what is small half, it is half man

what is small half that will be what clear me, can be more clear as to what is small means, no that

is a valid way of interpreting small half tell me, no, no, no, wms right, so all the w's that have a

large value should come here because they get e-α.

The w’s ensemble small value should go there because they get multiplied by eαm, so what are

w’s is a small values the ones that I have correctly classified up till the previous point w is the

large value are the ones that I have incorrectly classified up to the previous point, so at the mth



stage what I should be looking at is try to get the data points which I misclassified from the

previous stage, try to get them correctly as many as possible right.

So that is essentially the intuition behind ADABOOST, so at every stage what you do is you try

to look at the previous stage see which are the data points you misclassified it try to get them

correctly in this stage, right and it is okay if you make mistakes on data points that you have

correctly  classified till  the previous stage why is  it,  okay.  And because those classifiers  can

possibly adjust for it okay, then we will look at how we will actually do this again right. 

So I am going to call, so it is all the weights of all the data points I got correct at m th stage right,

likewise weight of all the data points I made a mistake on at the m th stage right, so then I can

write my es simply as okay, so if you think about it the value of α really does not matter in my

choice  of  km right,  regardless  of  the  value  of  α  right,  regardless  of  value  of  αm whatever

argument I gave you this no holes right, the idea is to see how much of the weight, the weight

you can push to Wc right, and how less of the weight you keep in We.

I mean there is total of weight right, there is some total W right, W is a constant okay, WC +W is

a constant, the goal is now to see how much weight you can push into WC as posted, km will be

the classifier that rise as to my WC, so how we do this well you can use you can classifier they

images that can assign based data point, we discussed very briefly in session the case right, we

can assign ways to data points and you can essentially multiply the error that you make on a data

point by the corresponding weight, right.
 
So the error that you make you multiplied by the corresponding weight so that you can use

weighted minimize other ways of doing this, so one way people see what I am saying over km

right, you see what you are supposed to do to get your k, the km is such that maximum weight

goes into Wc they are splitting your W into two parts and depending on what data points are

making mistakes on right, the data points  you do not make mistakes on contributed Wc the data

points you make mistakes on contribute of e.

If you want to see how much larger you can Wc and We basic that is the classifier you have to

find, before that you use some kind of a payment method, so one way of achieving this is do the

following you are saying weights to all the data points now what you do, if you go and sample

some of these data points according to their weights, create a new training set by sampling from



this data points are given things according to the weights, so what does this mean points for

which the weight is higher you get sample more often into this data sets, points for which the

weights are very low I do not even appear in the data set, right.

So the points appears multiple times in the data set then when you are trying to minimize the

training error you are likely to get a point correct, so instead of using a directly using a weighted

training algorithm people simulate that by sampling from the data weights okay, so what has

happened unfortunately because of this I change of tends to compact by bagging and boosting in

the minds of people and if you look at some of the data mining text books especially some of the

earlier data mining text books exciting and boosting we needed will described in a very similar

fashion right, what do you do in bagging whenever you add a new classified.

So in the older textbooks how they describe is that what you do in bagging is every time you

generate  a new sample you sample uniformly right,  with replacement  right you with sample

replacement  and boosting the differences  every time we generate  a new sample you use the

prediction error from the previous thing there is only difference between bagging and boosting

right.
But operationally if you think about it so there is only difference between bagging and boosting,

but then boosting is inherently serial and then there is this error minimization property right, but

that never comes across and people just tend to think of boosting as bagging with the different

sampling distribution right, whether it is incorrect at the fundamental principles of the two things

are very different okay. 

So we have found km now right, so we all know how to find km you do some kind of weighted

error minimization you find km, so what is next, what is next we need to find αm right, see

regardless of what value of αm you choose the minimizer is the for km is the one that gives you

maximum weight into Wc, correct. But then having chosen a km I now have to choose an αm

that gives me the error detection, so how do you go about doing that.
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In fact we can do our, so set is equal to 0, so αm is essentially 1/2 ln 1- the error rate it is error

rate is essentially the weight of the data points on which you are making a mistake divided by the

total weight right, so this is for the km classifier alone right, We is the data points on which the

mth classifier alone makes the error not Cm but km correct, so that is what we divided these

things into right, so this is the thing where km makes error, so essentially that so the data points

on.

So essentially it tells you how good the classifier, if the classifier is really good right not just on

the data points that you are interested in but on the entire data set and if the classifier is very

good then the weight will be high that is in fact the classifier has an error of 0 what will happen

rate will be infinity, because the only classifier you will need right you have a header of 0 on all

the data points why do you need other classify just that one is enough right.

But then suppose it has a very high error, error close to 1 where it will be 0 okay, so depending

on how good the classifier is this way it will vary okay, and then anything else that you have to

do I have found km, I have found αm what do I have to do, I have to change my W’s now for the

next stage right,  so what is my Wi is e-yiCm-1(xi) right, so now it has to become e-yi.cmxi so what is the

right best way to do that, this multiply the existing W by e -yi.kmxi right, does it make sense after

you have done that you come here okay, I do not erase that part right. So because you need the

αm here for your update, so once you find the αm you come back here and change the weights of



all the data points by this amount okay, as it makes sense so that is a plain simple version of

ADABOOST okay.

So in fact we can show that the exponential loss function is very closely related to the deviance

right,  and in fact an equally popular version of boosting called logic boost exists,  where we

actually  use the deviance  the logistic  function right,  the log odds function  that  we used for

logistic regression you can use the same error function and then derive all the update rules that

we just did for the exponential loss function you can do the same thing for the logit function the

log odds function also and you can come up with similar update rules okay.

So the recent ADABOOST is so popular is because it deals such very simple updates right, if you

think about  it  all  the  computation  you do is  okay,  you find  a  classifier  that  minimizes  this

weighted the error right then you come back and compute this αm and then you go back and

change  the  weights  and  then  repeat  until  you  are  happy  with  the  performance  of  the  total

classifier right, and both with basting I mean bagging and boosting the commend both here start

basting things anyway if you do both decision trees are very popular classifiers for this, okay.

In bagging it seems to make sense right, why you want to bag decision trees they are notoriously

unstable so if you want to, if you bag decision trees you get more stable estimates, why would

you want to bag, why do you want to boost decision trees, are they weak classifiers. Exactly, so

what do you do with decision trees in fact you can do the most extreme thing you can just have

one node, just have the root node right, one node what can you do with one node decision tree.

Yeah, that is somewhat like linear right yeah, so somewhat likely linear I agree but people call it

decision trees right, so one node decision tree because of the way I choose which feature I pick

right, I will use information gain or Gini index or one of those things okay, I will at least take

50% classification otherwise I would not even split right on that 50% will I will be better than

50%.

I will be better than random even if I split on one node right, so I will split on one node and or

maybe if the performance is too weak I can perform I can do a two level tree okay, these are

called decision stumps, I do not build a full tree but it is like chopped off at a very close to the

root right, so one not two levels of the trees though they are v-classifiers and they take very little



time to estimate and I can do many, many, many of these very quickly essentially what I do is, I

boost these decision terms okay. In fact there is one result in the book if you look at it right.
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So I do not remember the exact scale on the y-axis but the x-axis is the number of levels of

boosting that they do right, and so on so forth, the number of levels of boosting that they do so

100, 200, 300 and so on so forth, so a single stump it gives some performance level at that height

okay, just one strum the best single stump gives you a performance there and they trained it on

the full data and they get a performance here and this is like a 244 node tree, 244 notes is a fairly

complex thee they built and that is the performance that they get right.

And then they did boosting the start here obviously with a single node right, and then they do

boosting  and  then  they  find  that  the  tree  the  performance  just  keeps  improving  as  I  do

ADABOOST. Remember and these are all single node trees okay, they are all single node trees

and so essentially by the when they reach 100that means they have only 100 nodes basically and



they are way better than the 244 nodes that you get with a singletree right, and they reach 244

notes they are like more than twice as good as the single tree they built with 244 notes.

Because the objective function you are minimizing is something very,  very different  right at

every stage you are changing the function and you are focusing your efforts on actually getting to

the harder parts of the space right, so that essentially it is little magical. In fact this is more

dramatic is it something like this but look at look at the book crippled for the exact figure right,

so this is really amazing posting is very powerful and in fact I talked briefly about random forest

in the next class which is you do not even have to do any decision making right, you do things

randomly but then do a lot of them right that is also very powerful.

So random forest is not a boosting technique by the way random forest is a bagging technique

right but then that is also very powerful.
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