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One of the important concepts in probability theory is that of the random variable. A random

variable is a variable whose value is subject to variations that is a random variable can take on a

set of possible different values each with an associated probability. Mathematically a random

variable is a function from the sample space to the real numbers. Let us consider some examples

suppose we conduct an experiment in which we roll three dice and are interested in the sum of

the outcomes.

For example the sum of files can be observed if two of the dice show up to each and the other die

shows up as one. Alternatively the sum of five can also be observed if one die shows up as three

and the other two dice show up one each. Since we are interested in only the sum and not the

individual results of the dice rolls we can define a random variable which maps the elementary

outcomes that is the outcomes of each die roll to the sum of the three rolls.

Similarly in the next example we can define a random variable which counts the number of

heads  observed when tossing a  fair  coin  three  times.  Note that  in  this  example  the  random

variable  can take values between 0 and 3 whereas in the previous example the range of the



random variable is between 3 and 18 corresponding to all  dice showing up one and all  dice

showing up six.
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Consider  the  previous  example  experiment  of  tossing  a  fair  coin  three  times.  Let  X be  the

number of heads obtained in the three tosses that is X is a random variable which maps each

elementary outcome to a real number representing the number of heads observed in that outcome

this is shown in the first table. The first row lists out each elementary outcome and the second

row this out the corresponding real number value to which that elementary outcome is mapped

that is the number of heads observed in that outcome.

Now instead of using the probability measure defined on the elementary outcomes or events we

would ideally  like to measure the probability  of the random variable  taking on values in its

range.  What we are trying to  say here is  that  when we define probability  measure we were

associating each event that is subset of the sample space with a probability measure. When we

consider random variables the events correspond to different subsets of the sample space which

mapped to different values of the random variable.

This is illustrated in the second table, the first row lists out the different values that the random

variable X can take and the second row lists out the corresponding probability values assuming

that the coin toss is a fair coin. This table describes the notion of the induced probability function

which maps each possible value of the random variable to its associated probability value. For



example, in the table the probability of the random variable taking on the value of 1 is given as

3/8. Since there are three elementary outcomes in which only one head is observed and each of

these elementary outcomes has a probability of 1/8.
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From the previous example we can define the concept of the induced probability function. Let ω

be a sample space and P be a probability measure, let X be a random variable which takes values

in the range X1 to XM the induced probability function px on X is defined as PX, x = xi equals

to the probability of the event comprising of the elementary outcomes ωj such that the random

variable X map ωj to the value Xi.
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The cumulative distribution function or CDF of a random variable X denoted by Fx(x) is defined

by Fx(x) equals to the probability of the random variable taking on a value less than or equal to x

for all values of x. For example, going back to the previous random variable which counts the

number of heads observed in three tosses of a fair coin. The following table shows the intervals

corresponding to the different values of the random variable X along with the corresponding

values of the cumulative distribution function.

For example, Fx(x)=Fx(1)=1/2, because the probability that the random variable X has a value of

one let us just go back to the previous example right the probability that the random variable X

has a value of 1 is 3/8, the probability of X that the random variable x=1/8. And therefore, the

probability  that  the  random  variable  X  takes  on  a  value  with  less  than  or  equal  to  1  is

1/8+3/8=4/8 or ½. 
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A function is a valid cumulative distribution function only if it satisfies the following properties.

The first  property simply states that the cumulative distribution function is a non decreasing

function. The second property specifies the limiting values, limit X tends to -∞ Fx(x) =0 and

limit X tends to ∞ Fx(x) =1. The third property specifies right continuity that is no jump occurs

when the limit point is approached from the right this is also shown in the figure below.
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A random variable X is continuous if its  corresponding cumulative distribution function is a

continuous function of X, this is shown in the second part of the diagram. A random variable X is

discrete if its CDF is a step function of X this is shown in the first part of the diagram. The third

part of the diagram shows the cumulative distribution function for a random variable which has

both continuous and discrete parts.
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The probability mass function or pmf of a discrete random variable X is given by Fx(x) equals to

probability of X = x for all values of x. Thus for a discrete random variable the probability mass

function of that variable gives the probability that the random variable is equal to some value.

For example, for a geometric random variable X with parameter P the pmf is given as Fx(x) = (1-

p)x-1p for the values of x = 1, 2 and so on. And for other values of x the pmf = 0. 

A function is a valid probability mass function if it satisfies the following two properties. First of

all  the  function  must  be  non-negative,  secondly  the  summation  overall  X  the  value  of  the

function summed over all values of x should be equals to 1. For continuous random variables we

consider  the  probability  density  function.  The  probability  density  function  or  pdf  over  and

continuous random variable is the function Fx(x) which satisfies the following.

The integral from -∞ to X Fx(t)dt is equals to the cumulative distribution function at the point X.

Similar to the pmf the probability density function should also satisfy the following properties.

First of all the probability density function should be non-negative for all values of x. Second

integrating over the entire range the probability density function should sum to 1.
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Let us now look at expectations of random variables the expected value or mean of a random

variable X denoted by expectation of X is given by integral -∞ to ∞ x into Fx(x)dx. Note that

Fx(x) here is the probability density function associated with random variable x. This definition

holds when x is a continuous random variable. In case that x is a discrete random variable we use

the following definition expectation of x is equal to sum over all x such that probability of x

greater than 0.

That is we consider all values of the random variable for which the associated probability is

greater than zero x into Fx(x). Here Fx(x) is the probability mass function of the random variable

X which essentially gives the associated probability for a particular value of the random variable

thus leading to this definition.
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Let us now look at an example in which we calculate expectations that the random variable X

take  values  -2,  -1,  1  and  3  with  probabilities  ¼,  1/8,  ¼  and  3/8  respectively.  What  is  the

expectation of the random variable Y-X2? So in this question we are given one random variable

the values which this random variable takes and its associated probabilities, but we are interested

is in the expectation there are a random variable Y which is defined as Y-X2.

So what we can do is we can calculate the values that the random variable Y takes along with

associated probabilities, since we are aware of the relation between Y and X. Thus we have Y

taking  on the  values  1,  4  and  9  with  probabilities  3/8,  1/4,  and  3/8  respectively  given this

information we can simply apply the formula for expectation and calculate the expectation on the

random variable  Y this  is  as  follows giving a  result  of  19 /4  another  way to  approach this

problem is to directly use the relation Y= x2   in calculating expectation does expectation of y is

simply the expectation of the random variable x2 

So in place in the formula for expectation instead of substituting X we substitute X2   thus we

have some overall x x2 into probability of x = x calculating the values we get the same answer of

19 / 4.
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Let us now look at the properties of expectations Let X be a random variable A B and C are

constants and g1 and g2 are functions of the random variable X such that their expectations exist

that is they have finite expectations according to the first property expectation of a into g1(x) +  b

times e2( x) + c = A times expectation of g1 of x +  b times expectation of g2(x) +c  this is called

the linearity of expectations there are actually a few things to note here first of all expectation of

a constant is equal to the constant itself expectation of a constant times the random variable is

equal to the constant into the expectation of the random variable and the expectation of the sum

of two random variables can also be represented as the sum of the expectations of the do random

variables.

Note that here the two random variables need not be statistically independent according to the

next property if a random variable is ≥ 0 at all points then the expectation is also expectation of

that random variable is also ≥ 0 similarly if one random variable is > another random variable at

all points then the expectation of those random variables also follow the same constraint finally

if a random variable has values which are which lie between two constants then the expectation

of that random variable will also lie between those two constants.
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Let us now define moments for each integer n the nth moment of x is μn` = expectation of X raise

to the power n also the nth central moment of X is μn` = expectation of X – μn  so the difference

between moment and central moment is in central moment we subtract the random variable by

the mean of the random variable or expected value the two moments that find most common use

are the first moment which is nothing but μ` = expectation of X that is the mean of the random

variable  X and the second central  moment which is  μ2 = expectation of X –μ2  which is  the

variance of the random variable X.
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Thus the variance of a random variable x is a second central moment variance of x equals to

expectation of X – μ2  note that μ  is just the first movement which can be so it can be replaced by

expectation  of  X thus we have variance  of X = to  expectation  of  X -  expectation  of  X2  by

expanding disturb and applying linearity of expectations we will finally get variance of x = to

expectation of x2   - x2  of the expectation of X the positive square root of variance of X is the

standard deviation of X note that the when calculating variance the constants act differently and

compared to the linearity of expectation. This is a very useful relation to remember variance of

ax +b = a 2 into variance of X where A and B are constants.
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The covariance of two random variables X and Y is covariance of x , y equals to expectation of

X - expectation of X x Y -  expectation of Y remember that the variance of our random variable

X is nothing but the second central moment thus the variance of a random variable measures the

amount of separation in the values of the random variable when compared to the mean of the

random variable  for covariance  the calculation  is  done on a pair  of random variables  and it

measures how much two random variables change together consider the diagram below in the

first part assume that the random variable X is on the x-axis and the random variable Y is on the

y-axis.

We note that as the value of x increases the value of y seems to be decreasing thus for in for this

relationship we will observe a large negative covariance similarly in the third part of the diagram

we can see that as the variable value of variable x increases, so does the value of the variable y

thus we see a large positive covariance however in the middle diagram we cannot make any such

statement because as x increases there is no clear relationship as to how Y changes thus this kind

of a relationship will give zero covariance.

Now from the diagram it should immediately be clear that covariance is a very important term in

machine  learning because we are often interested in  predicting  the value of one variable  by

looking at the value of another variable we will come to that in further classes.
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Closely related to the concept of covariance is the concept of correlation the correlation of two

random variables X and Y is nothing but the covariance of the two random variables X and Y

divided by the square root of the of the product of their individual variances basically correlation

is a normalized version of covariance, so the correlation will always be between - 1 and 1 also

since we used the variance of the individual random variables in the denominator for correlation

to be divine individual variances must be nonzero and finite.
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In the final part of this tutorial on probability theory we will talk about probability distributions

and list out some of the more common distribution that you are going to encounter in the course

before we proceed let us consider this question consider two variables x and y and suppose we

know the corresponding probability mass function FX and FY corresponding to the variables x

and y can we answer the following question what is the probability that X takes a certain value

small x and y takes a certain value small y think about this question. If you answered no then

you're correct let us see why.
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Essentially what we were looking for in the previous question was the Joint Distribution which

captures the properties of both the random variables the individual PMS or PDFs in case the

random variables are continuous capture the properties of the individual random variables only

but miss out on how the two variables are related thus we define the joint PMF or PDF, FXY as

the probability that X takes on a specific value small x and y takes on a specific value smaller y

for all values of X & Y.
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Suppose we are given the joint probability mass function of the random variables x and y what if

we are interested in only the individual mass functions of either of the random variables this can

be obtained from the joint probability  mass function by a process called marginalization the

individual probability mass function thus obtained is also referred to as a marginal probability

mass function thus if you are interested in the marginal probability mass function of random

variable x we can obtain this by summing the joint probability mass function overall values of Y.

Similarly  the  probability  mass  function  of   the  marginal  property  mass  function  of  random

variable Y can be obtained by summing the joint probability mass function over all values of x

note that in case the random variables considered here are continuous we substitute summation

by integration and PM/ PDF.
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Like joint distributions we can also consider conditional distributions for example here we have

the conditional distribution fx given Y which is the probability that the random variable X will

take on some value small x given that the random variable Y has been observed to take on a

specific  value  small  y  the  relation  between  conditional  distributions  Joint  Distribution  and

marginal distributions are is shown here this relation should be familiar from the definition of

conditional  probability  that  was seen earlier  note that  the marginal  distribution fyy is  in the

denominator. And hence it must not be equal to 0.
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The overall idea of joint marginal and conditional distributions is summarized in this figure the

top left figure shows the Joint Distribution and describes how the random variable X which takes

on 9 different values is related to the random variable Y which takes on two different values the

bottom left figure shows the marginal distribution of random variable X as can be observed in

this figure we ignore the information related to the random variable Y.

Similarly the top-right figure shows the marginal distribution of random variable Y finally the

bottom-right figure shows the conditional  distribution of x given that the random variable Y

takes on a value of one looking at  this  figure and comparing it  with a joint  distribution we

observe that in the bottom-right figure is simply ignore all the values of x for which y equals to 2

that is the top half of the joint distribution.
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In the next few slides we will present some specific distributions that you will be encountering in

the machine learning course we will present the definition and list out some important properties

for each distribution it would be a good exercise for you to work out the expressions for the pms

or PDFs and the expectation and variances of these distributions on your own we start with the

Bernoulli distribution consider a random variable X taking one of two possible values either 0 or

1 let the PMF of X be given by FX of 0 is equal to probability that the random variable X takes

on a value of 0 = 1-P where P is lies between 0 and 1and FX of 1 equals to probability that the

random variable X takes a value 1 = p.

Here  p  is  the  parameter  associated  with  the  Bernoulli  distribution  it  generally  refers  to  the

probability of success so in our definition we are assuming that X = 1 indicates a successful trial

and  x  equals  to  0  indicates  of  failure  the  expectation  of  a  random  variable  following  the

Bernoulli distribution is P and the variance is P x 1 – P the Bernoulli distribution is very useful to

characterize experiments which have a binary outcome such as in tossing a coin we observe

either heads or tails or say in writing an exam either pass or fail.

Such experiments can be modeled using the Bernoulli distribution next we look at the binomial

distribution.
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Consider the situation where we perform n independent Bernoulli trials where the probability of

success for each tribe equals to P and the probability of failure for each trial equals to 1 - B Let X

be the random variable which represents the number of successes in the end trials then we have

probability  that  the  random  variable  X  will  take  on  a  specific  value  of  small  x  given  the

parameters n and P = n choose X that is the number of combinations of observing X successes in

n trials in to bx x 1 – pn-x .

Note that here x is going to be a number between 0and n the expectation of a random variable

following the binomial distribution equals to NP and the variance equals to n x P x 1 - P the

binomial distribution is useful in any scenario where we are conducting multiple Bernoulli trials

that is experiments in which the outcome is binary for example suppose we have a coin suppose

we toss a coin 10 times and want to know the probability of observing three heads given the

probability of observing a head in an individual trial we can apply the binomial distribution to

find out the required probability.
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Suppose we perform a  series  of  independent  Bernoulli  trials  each  with  the  probability  P of

success let X represent the number of trials before the first success then we have probability that

the random variable X will take a value small x given the parameter P = 1 – px   - 1 x p this

definition is quite intuitive. Essentially we are trying to calculate the probability that it takes us

small X number of trials before observing the first success this can happen if the first x minus y x

minus 1 trials  failed that is with probability  1 - P and the last  I  will  succeeded that is with

probability P.

A  random  variable  which  has  the  this  probability  mass  function  follows  the  geometric

distribution for the geometric distribution the expectation of the random variable equals to 1 / P

and the variance equals to 1 - P / P2.
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Many situations we initially  do not know the probability distribution of the random variable

under consideration but can perform experiments which will gradually reveal the nature of the

distribution in such a scenario we can use the uniform distribution to assign uniform probabilities

to all values of the random variable which are then later up dated in the discrete case say the

random variable can take n different values then we simply assign a probability of 1 / n to each

of the N values in the continuous case if the random variable X takes values in the closed interval

a comma B then it is PDF is given by FX of x given parameters a comma B = 1 / B - A if X lies

in the end closed interval a comma B and 0 otherwise.

For a random variable following the uniform distribution the expectation of the random variable

x = 2a + B / 2 and the variance equal to B – a2 the B – A2 / 12.
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A continuous random variable  X is  said to  be normally distributed with parameters  mu and

Sigma square if the PDF of the random variable X is given by the following expression the

normal distribution is also known as the Gaussian distribution and is one of the most important

distributions  that  we  will  be  using  the  diagram  represents  the  famous  bell-shaped  curve

associated with the normal distribution.
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The importance of the normal distribution is due to the central limit theorem without going into

the details there are central limit theorem roughly states that the distribution of the sum of a large

number of independent identically distributed variables will be approximately normal regardless

of the underlying distribution due to this theorem many physical quantities that are the sum of

many  independent  processes  often  have  distributions  that  can  be  modeled  using  the  normal

distribution.

Also  in  the  machine  learning  course  we  will  be  often  using  the  normal  distribution  in  its

multivariate form here we have presented the expression of the multivariate normal distribution

where µ is the D dimensional mean vector and Σ is the D cross D covariance matrix.
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The PDF of the β distribution in the range 0 to 1 which shape parameters α and β is given by the

following  expression  where  the  λ  function  is  an  extension  of  the  factorial  function  the

expectation  of  a  random variable  following the  β distribution  is  given by α /α  + β  and the

variance is given by α β / α + β2 x α + β + 1.
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This diagram illustrates the β distribution similar to the normal distribution in which the shape

and position of the bell curve is controlled by the parameters µ and σ2   in the β distribution the

shape of the distribution is controlled by the parameters α and β in the diagram we can see a few

instances of the β distribution for different values of the shape parameters note that unlike the

normal distribution a random variable following the beta distribution takes values only in a fixed

interval.

Thus in this example the probability that the random variable takes a value less than 0 or greater

than 1 = 0 this ends the first tutorial on the basics of probability theory, if you have any doubts or

seek clarifications regarding them regarding the material covered in this tutorial please make use

of the forum to ask questions as mentioned in the beginning if you are not comfortable with any

of the concepts presented here do go back and read up on it there will be some questions from

probability theory in the first assignment. So hopefully going through this tutorial will help you

in answering those questions and note that there we will be having another tutorial next week on

linear algebra.
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