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Parameter Estimation III 

So there is one thing that we are doing here see if you remember what was our two stated goals

which I have erased of the board, what are the two stated goals that we had? One was to find

some parameters that best explain the data, what is the second goal? Exactly right I am doing the

best I am actually finding the best parameter like one single setting for the parameter that best

explains the data that was given to me that is what we have been doing so far. But in terms of

finding the best prediction for a new data point am I doing the right thing so far is it the right

way to do it right, so if you think about it right.

(Refer Slide Time: 01:01)

So probability of X ~ given X, it is a probability of X ~ given θ times the probability of θ given

X summed over all θ if θ was a I mean first a discrete probability distribution but since we have



been considering Bernoulli and other things it is going to be a integral over all θ  right I am not

talking about the outcome I am talking about the parameterization so the parameterization is a

continuous parameter right, θ is a continuous parameter.

So I cannot sum over θ it is not like I am only considering θ1 θ2 θ3 I am considering θ in the

interval 0 to 1, right? So is integral over θ, right. So this is this is the actual outcome right but

think about what happens in the case of the prior or any one of this case right I am only picking

one θ it could very well be that there is another θ which also has a high probability of being

correct.

But since I am picking only one θ I am sticking with that, there could be two different θ which I

could have used them right  in fact  I  should ideally  be using all  the θ because for a  certain

parameter setting some X  ~might have a high value right, so even if that probability of that

happening is very small and I should still be accounting for that in my prediction, that makes

sense why this is a much better predictor than using ML map. But why do not people use this

then computationally hard, why?
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So far I was actually trying to avoid computing probability of θ given X right here I did that by

assuming everything else was constant right and I just had to do the likelihood right here I said

okay  I  am just  doing  a  point  estimate  so  I  can  ignore  the  denominator  I  can  only  do  the

numerator right but when I go here boom, I have to do the full computation right this essentially

means I need to know p(x) right.

And that becomes hard but computing that is actually harder to actually multiplied over all the

data points that you have right so it becomes a little tricky right and what is P(X) by the way, no

yeah but what is P(X), p(x) is a probability of seeing the data right what does the probability of

seeing that I do not know that I have only given you the data right I do not I do not know the

distribution from which the data was drawn that is exactly what you are trying to do so the θ

gives you the distribution over which the data was drawn right, so what would be P(X) right so

that  is  P(X),  how do you compute  that?  Good point,  so whenever  we talk  about  parameter

estimation right so you need to have some parameterize form of a function for you to do the

estimation of the parameters right.

So if you remember in the logistic regression it was not Bernoulli it was the logic function that

we were trying to estimate the parameters for and I also told you in when we looked at LDA I

told you we could make a lot of different assumptions about the parameters in the LDA we made

an assumption what did we assume it was a Gaussian right, anything else? Covariance was the

same right this is for LDA right.



And I at that point I told you could use mixture distributions as well and you could use whole

bunch of other things I also said you could use nonparametric techniques right but I told you it is

a  misnomer it  is  a  misleading name because nonparametric  really  means that  you just  keep

adding  parameters  and  things  like  this  so  there  is  a  very  flexible  very  powerful  modeling

paradigm so you could do parameter estimation for nonparametric methods also right.

Where  you have  to  actually  figure out  how many parameters  you need as  well  so then the

distributions you consider become more and more complex now we are looking at very simple

forms  right  but  the  distributions  become  more  complex  and  it  is  the  parameter  estimation

consequently becomes harder right, so infact most of machine learning research nowadays is

essentially on parameter estimation for all kinds of different things like non parametric models

how do you do the parameter estimation things like that lot of research is going into that. And a

lot of powerful models have come out.  

Let us go back to our Bernoulli case for a minute right I have Bernoulli and my prior is a ß

distribution right now I can try to do this so this is this will be what, this P(x) given θ right that is

P(θ),p(x) given θ is p(θ) divided by make that makes sense right this just the is p(x) right this is

P(ρ) given X right so X is your C, C is the set of experiments that we were talking about that

right so P(ρ) given X is equal to P(x) given ρ x p(ρ) / p(x).

Next p(x) is given by integral over the entire row space which is 0 to 1 okay p(x) given ρ x p(ρ) d

ρ and it is just the base rule I have it now, right. Towards one thing you notice here what is gone

here or nice convenient logarithms are gone right but it does not matter too much why? We are

not doing any maximization here we are not have to take the derivative or anything now right

and this actually interested in computing this whole functional form again and I am not interested

in taking derivatives and trying to maximize.

So it is okay if we look like if I do not have logarithms but it just makes the whole thing more of

a nasty right, when it turns out this is pretty easy to compute well so I skipped a few steps in

between but you can figure that out so I wrote out probability of ρ given α ß which is essentially

this right and this product I can write like this as we did earlier that we have done both of this

before so what I have left out here is a normalizing function.



There should be a 1/ß, ß function of  α ß right and then I have this integral also and it turns out

that this whole thing including that normalizing factor is actually equivalent to the ß function of

n0 +  α I mean n1 + α and N0 + ß okay. These are P’s these are ρ’ s yeah if you remember the ß

function right it is low power  α – 1,  (1- ρ)ß-1 and the normalizing factor is a ß function of  α ß

right, so it is ρn1 +( α -1)  , (1 – ρ)n0 + ß – 1  and then there is the ß function of n1 +  α, n0 +  α this

actually itself a ß distribution right.

So it is exactly the same ß distribution so we started off with the ß distribution as the prior over

the ρ right and then we did this computation and the posterior turned out to be a ß distribution as

well  is  very  convenient  right?  Such distribution  which  allowed  us  to  do  this  are  known as

conjugate pairs that are conjugate distributions so what are the two distributors are talking about

here ß and ß and Bernoulli right.

So the data distribution was Bernoulli prior distribution was ß right if that is the case then the

posterior will also be ß right people know the difference between Bernoulli and binomial, what is

the  difference  between  Bernoulli  and  binomial?  Single  trial  is  Bernoulli  repeated  trials  is

binomial right it turns out that ß is also conjugate prior for binomial, right.
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Any the famous conjugate pairs that you guys know? So both the data and the prior can because

it  so remember what  we mean by the prior distribution  right  so the prior distribution is  the

distribution  over  the  parameters  of  the  data  distribution  when I  say  Gaussian-Gaussian  that

means that okay I am assuming my data is coming from a Gaussian and I am going to assume

that the mean of the Gaussian is coming from another Gaussian right.

The probability of the mean is going to be given by another Gaussian so that is what I mean by a

Gaussian-Gaussian prime like the like in the ß Bernoulli prior I am assuming that the probability

of heads is ρ and the prior distribution ρ is a ß distribution, so when I say Gaussian-Gaussian I

am assuming that the data is coming from a Gaussian distribution and the mean of the Gaussian

is coming from another Gaussian distribution that is what Gaussian – Gaussian. There is also

another very famous and so deliciously so people about multinomial is what is multinomial? 

It is a distribution that will describe multiple roles of a dye for example, binomial is when you

have  two  outcomes  multinomial  is  when  you  have  multiple  outcomes  right,  so  the  single

experiment  single  trial  version  of  multinomial  is  called  not  too  many  people  know  it  and

multinomial, binomial is called Bernoulli the single trial of a multinomial is called know the

unimaginative name is called the discrete distribution okay.

So but so multiple trials is called the multinomial distribution and the prior the conjugate prior

for  it  is  an  original  a  distribution  which  is  nothing  but  the  multi-level  extension  of  the  ß

distribution  so  it  is  like  the  ß  distribution  when  it  is  a  multi-dimensional  extension  of  ß

distribution okay and there are a bunch of others okay so but there are several that are known and

so typically what you do is you look at your data right look at the data and figure out what

distribution is a good distribution for the data right.

So for example coin tossing experiments we figured out that Bernoulli is good right, so die rolls

right we will figure out that multinomial is a good distribution what about text, people typically

use multinomial distribution so you can think of having a very large dimensional die on one

word written on each side of it right so what is the next word you use roll the die that will tell

you or the next word to use right so that is that is do not laugh I mean that is the seriously the

model that people use for modeling text you know they use multinomial distribution so they

assume that each word is a generated independent of the previous word sometimes when okay

fine let another yeah.



So that each word is generated independent of the previous word and so you can model that as a

multinomial distribution right, so they have actually have different names for it, it is sometimes

called the Uni Graham model right also it is called the roughly a bag of words model right where

the sequence do not matter and each word is generated in differently so many ways of describing

the same idea right  but at  the end of it  is  nothing but using a  multinomial  as comical  as it

sounded that is what it means.

Having this huge die and rolling it every time I want to add a word to the document okay so that

is  multinomial  right  so  once  you  have  decided  what  is  the  distribution  that  you  think  is

appropriate for modeling the data then you go and decide on what your prior should be right so

sometimes the choice of the distribution for modeling the data is driven by not whether there is a

conjugate  prior  is  available  for  the  distribution  or  not  right  so  maybe  there  is  a  different

distribution that is perfect for modeling data.

But because there is a very convenient conjugate prior for multinomial right people want to use

multi  no  means  so  like  that  there  are  other  instances  where  even  though  Gaussian  is

inappropriate for example people want to model discrete value data right the Gaussian cannot do

discrete  values  right  but  then coming up with  the distributions  which  have allowed discrete

values and have nice conjugate priors is hard right so people just go with Gaussian sometimes

you end up operate they use Gaussian.

Because it has a nice conjugate price so y and y are conjugate priors important, because an easy

to do things in iterative fashion because once I run some data through the ß Bernoulli pair, okay I

am going to end up with a ß distribution over the parameters again so if I get more data and I can

just happily just go ahead and do it and if I every time I run through it I keep getting a different

probability distribution there is no functional form for me to stick these things into and then it

becomes very hard for me to do this in any tractable fashion then I cannot come up with some

parameter update equations or anything like that so it becomes very hard so, so the conjugacy is

very important.
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