
NPTEL

NPTEL ONLINE CERTIFICATION COURSE

Introduction to Machine Learning

Lecture 35

Prof. Balaraman Ravindran
Computer Science and Engineering

Indian Institute of Technology Madras

Artificial Neural Networks IV –
Initialization, Training and Validation

(Refer Slide Time: 00:21)

The first thing concerns the starting value of the weights right, so you have all this α and β you

have this whole set of parameters in a neural network right, so we talked about gradient descent

but gradient descent starts at some point in the weight space right, so you need to have an initial

guess for what your α and your β should be right. So what should you do what are the good

guess? set them all to1 is it yeah, so setting all of them to the same value whether it is one or

sometimes people say this 0 right setting all of them to the same value is usually not a good

choice right.

More often than not you will end up in some weird part of your gradient space and you will find

it hard to get out right it is very rare that you are going to come up with a actual solution where

all the weights are the same right. So if you were going to start off with a solution where all the

weights are same right it is going to be hard to specialize right, so typically what you do is you

douse random initialization, but there is one more constraint let us be feeling really lonely one

more constraint to the random initialization.

So what do you think that would be the constraint yeah of course you do not really want to have

infinite weights yeah, so but then what should the min and max is, so you really want your

weights to be rather small okay? So just think about what is the implication of having really

small weights what is the implication of having really small weights, so you remember your

sigmoid right, so if your weights are really small where do you expect the outputs to lie? You

know your α transpose x or your β transpose z will lie somewhere in this region because this is

where 0 is right.

So this is 0.5 or 0 depending on whether you are using tan HR the sigmoid, so if you are using

the sigmoid, so right around 0 you will have this 0.5, so if you look at this region this is almost a

linear region correct. It is almost a linear region so I would really like to start off my network so

that most of the outputs of the neurons are in the linear region. Why is that? Can you think of it

and you have enough information to answer this question. The gradient will be larger right so the

gradient will be larger if you are somewhere around here.

So even small changes in the input space or small changes in the weights will actually cause a

large change in the output right, so if you end up going somewhere here or somewhere here right

you can see that you are already saturated right, so you really have to drag yourself all the way

here to see any change. So if you are somewhere in the middle you are more sensitive right to

what the input right you are more sensitive to the weight changes right. So all of this helps you

learn more rapidly, so this is one of the reasons you start off with random initializations around 0.

Of course you can make everything zero but then that will put you in a very weird part of the part

of the search space right. So it is good to have some kind of randomness so that each wait can

specialize to different things okay. It used to be the big bane of neural networks over fitting so

why is that the case? You know all of you remember what water fitting is right, sorry yeah so I

mean people remember what over fitting is yes, the training examples right there essentially you

are fitting the parameters very closely to the training examples.

So you are not able to do any kind of generalization to unseen examples right and the reason why

neural networks do this over fitting is exactly because they have too many parameters you have

so many weights here. So if you remember we actually counted the number of parameters in a

neural network right you know that M times 3 +1 + whatever K time’s n / M + 1 well that is a

huge number of parameters. So it is very easy for you to over fit so you have to be careful about

it, so there are two ways of avoiding over fitting.

So can you think of what are the two ways of avoiding over fitting one we already know

regularization right, so one way of avoiding over fitting is regularization, so what you do here is

you essentially add a quadratic penalty for the weights right so you do a norm α squared +norm β

squared and then you try to find the gradient with respect to that and then you try to minimize

things, right it becomes a little bit more complex and if you add a squared error penalty right if

you add a squared error penalty it is sometimes called weight decay right because it makes your

weights go towards zero. So sometimes called weight decay, so can you add a l1penalty

(Refer Slide Time: 07:16)

You could you could add anything I mean so it is it just makes it a little bit more complex but the

question is does it in do sparsity right, they said another way of avoiding over fitting yeah you

can type parameters together to avoid over fitting that is good but in which wherever is new tied

together? In fact one of the ways that deep learning actually has been made efficient despite

doing this tying of parameters right but then the architectures that look at are very complex right

so you could tie parameters together and try to reduce this okay.

So let me put that as a different kind of thing but it is actually a form of regularizing but it is yet

another approach which is a purely empirical way of doing things which is to do what is called

validation right I actually mentioned this in one of the earlier lectures right, so you train on a

training set and then you have a validation set and then people remember I drew even a picture

right, so as you are training so the error on your training set keeps going down right but the error

on the test set or the validation set will initially go down, at some point it will start going up right

maybe not that dramatically but go up nevertheless.

Like that right so the point here is where your right solution is okay, so I am putting it in quotes

right solution okay, so what is the x-axis and what is they-axis on this figure? Whatever is your

mission of error it could be miss classification error or whatever right, so fiction you ideally want

miss classification error if it is the regression it is a prediction error whatever and the x-axis is

usually iterations right but you could also think of having a figure like this for complexity right.

So you could say that I am going to keep adding more and more neurons right or more say I can

keep expanding my M right I can keep adding more neurons in the hidden layer right.

I cannot change the new neurons in the input layer I cannot change in your notes in the output

layer usually right because that is their depend on the problem that I am solving right when I can

keep increasing the neurons in the hidden layer right but then these are more or less you know

standard techniques for doing, I mean for avoiding over fitting not necessarily tailor to neural

networks right. So you should remember that there was about a decade and a half when people

worked a lot with neural networks in between right, they came up with many techniques for

avoiding this kind of over fitting.

And they have explored many variations on parameter tying right and also many different kinds

of regularizing so there are some really interestingly named algorithms for avoiding word fitting.

so one that I particularly like is to be called optimal brain damage, essentially the idea was to

remove weights from the network right so you train the neural network and then try to find out

the sensitivity of the output with respect to certain weights okay. If I am changing this weight

how much do the outputs change you know how much does the error change right.

So weights that have low sensitivity or right or yeah weights that exhibit low sensitivity on the

error right well then remove and then you just retrained we keep doing this. So that way you are

removing the number of parameters reducing the number of parameter heavily but we are not

affecting the output too much. So like that there are many variations on it but these are the three

things right that we have to think about.

(Refer Slide Time: 11:57)

Related to the over fitting question you see how do you figure out the number of hidden units

and layers. Like the very expensive way of doing it is to do a similar validation kind of a setup

right keep increasing the number of layers and then our number of neurons and check that out it

is incredibly hard right and so people came up with automatic pruning techniques right, people

came up with ways of growing your neural network. So they start off by having one neuron so

something very similar to your forward feature selection or what is the thing a stage by stage

wise selection right, so people remember stage wise feature selection what did he do?

At stepwise stage wise or something different see you later right so you could do the same thing

with neural networks right, you start by training a single neuron all right and then what you do is

once that neuron actually starts making some predictions right then you train another neuron that

actually nullifies the prediction error right. Now you know a third neuron that adds up both of

these and gives you the output right, so you could do something like that right so you do not have

to make a decision as to how many neurons you are going to put in from the beginning right as

you go along you just keep training more and more.

But the problem is such a network was that it will not look like your layered architecture right I

will start off with 1 neuron okay that will give an output then I will add the other neuron then

they will go so all of this gets the input directly, then I add another neuron right so the layer

architecture is gone no wall right. So now how many layers this is our two or three you know so

this neuron seems to be at the third layer right but it is connected directly to a neuron which is

certainly first layer because it is taking inputs from here.

But then well you do not have to be very dogmatic about having the standard three layered

architecture if you remember when introduced the standard three layer architecture I said there

are a lot of different deviations from this that people have proposed right and will not be looking

at most of those in detail. So these kinds of networks where you are actually trying to minimize

the residual at every point they are called cascade correlation networks, so there are. So the most

statistically sound ways to just do validation, what is the other way? To do it is kind of a cheat it

is slightly better what can you do you can take an educated guess using domain knowledge.

I said you have some information about how complex the system is and then you can use ideas

from that you can then try to see okay one layer two layers three layers right, so a lot of deep

learning network that nowadays happen essentially it is more empirically driven you try one

layer okay see what is the best you can do right see thoughts the best in performance, as you can

get and then you try to add another layer and see if we can improve that another layer another

layer until you are happy that you are performing well right. Of course you just cannot train the

network into the ground you have to always make sure that you are not over fitting it but you can

still this right okay.

So I did not explicitly mention this while talking about the numerical training but you can kind

of imagine, wherever that I am going to be using the data asset is rate as a real valued vector

right I would have to worry about scale, so if I have one variable that has a very large range

another variable which has a very small range, at the variable with a large rate it is obviously

going to dominate my gradient computation. If you remember the gradient has a X the x ml

component to it right that is the input variable is part of the gradient. So if the variable some of

the variables can have a very large range and some of the variables might have a very small

range and the large range variables will dominate the computation.

This numerically by being large they are going to dominate the computation right, so we do not

want that to happen whether they are actually needed or not just by being numerically large right

they will dominate the computation, so we essentially make sure that all the variables will have

the same range right. So we talked about this in couple of other scenarios also but in this case

again it is important so this is something which people typically forget. When they are using

either neural networks or SVM's you try you take the raw data right and you just try to run it

through a neural network or run it through an SVM and then produce a classifier right and quite

often things do not look work that well right.

You might find some reported results that are much better than what you are getting by using is

SVM, nine times out of ten okay the reason to fold with STL is a two-fold with neural networks

one thing you forgot to scale the input okay, the STM's what happened? So you have those kernel

functions we talked about right you forgot to tune the parameters of the kernel function you just

took the kernel function as it is and you are trying to use it so that the performance will be bad,

so you have to tune the parameters of the kernel function and you have to scale the inputs, if you

do not scale the inputs sometimes the performance can be arbitrarily bad.

And this is a problem which SVM do not have and that is one of the reasons they became so

much more popular than your networks in late 90s and early 2000s right, so the neural network

error surface is fairly complex. So what do I mean by error surface? So what is it so error surface

what will be the x axis the y axis the z axis whatever can you describe mathematically, what the

error surface is? with respect to what aha on the what parameter is not the inputs okay, so the

error surface is something which people have difficulty okay there is areas on I am making a fuss

out of it.

The error surface is the function of the error with respect to the parameters okay, so as I change

my α and β how does the error change okay, so that is that is the error surface that we are talking

about right and so how does the error surface how will it look like for the case of SVM and

minimizing something quadratic they are right in terms of β right, so it is actually very nice

quadratic thing, so it always has a single Optima right when the optimal hyper plane formulation

the very nice thing about it is it has got one Optima and then if you run the optimizer on it you

will always get that solution right.

The error cell phase for neural networks if you think about it it's got those stupid exponents in

there right your sigmoid there is the derivative of, your sigmoid is in there so the error surface is

going to look incredibly complicated right. So it is going to have lots of little valleys right the

error surface is going to look something like this, ever even look something like this okay, so if I

am doing gradient descent I might come here and get stuck, that looks like I mean whatever

direction I tried to go there is increasing. So I might say okay this is the good place to be so I

might just stop there right.

I could get stuck here what about here huh very slow or not at all because the gradient is 0 I

mean if you are in the middle of a point the gradient is zero because it is flat it is flat, I declared

that to be flat okay and so the gradient is zero at that point right and there you go okay and so

you might not just move right you are essentially drifting around there you and whatever

happens you are not able to make any progress. So the error surface can become really

complicated like this right and this is just on one dimension right, they say this is a no one it is a

single neuron with one input that is what we have drawn.

So imagine this generalized to a very large dimensional space right mp + mk dimensions right,

so the surface can be really complex and again the plethora of solutions were getting out of local

optima right, so we are not going to get into most of those and let us tell you one very practical

way of doing it essentially do restarts right. So you start off with some random initialization

close to 0 right you do gradient descent until you do not change weights very much. Remember

those weights right remember those weights and remember the performance. No reinitialize the

network again close to zero random weights close to zero.

You say different random see please all right and then rerun the experiments right and again you

will go off to some other optima remember those and keep doing it. There are other techniques

which people use right, so they can make the, you know there is something cleverer gradient

descent techniques right which all of you to get over these local optima not all of them but at

least some of the shallow or local optima it allows you to get over easily. So for example this is a

shallow local optima right with a little bit of effort I can actually get over and how do you

provide their effort.

So think of it from a very dynamics perspective, so people have added something called

momentum right, so if you have been moving in a particular direction I have been descending

little bit a little bit a little bit okay do not stop just keep going in the direction for some more time

right that is momentum right. So in this case these kinds of shallow things you can get over you

know the gradient has become a slowed down significantly right this becomes 0 here but I will

still be going in the same direction I went for a little while longer because I have momentum it is

going to take me forward.

So that is going to get me out of this little valleys but if you are in a deep valley then still cannot

get out right but so these kinds of tricks help right and then more recently with all the with deep

learning, that one of the reasons that deep learning is become so popular most people do have

very powerful gradient based techniques which allow you to navigate the error surface more

efficiently a lot to avoid local optima, but allows you to navigate the surface more efficiently

right good. So any questions so far, no why well I am going back to my zero yeah when I start

restart a little again be small weights right.

I will be very far away from this is optima I have converged to after a lot of training, you maybe

not see that, this is one thing which you should get your hands dirty then you will see what I

mean. Even small changes in the starting weight configuration can lead you into very different

Optima that so there is surface or so complex right and remember I am not just moving in one

direction or the other I have a very large dimensional space in which I am moving right. So even

though I am taking and I am constraining it to be around zero right, the volume that I can

actually start in is very large because of the high dimensionality of the weight space right.

So and each random starting point can be very different because it is also possible that you start

in the same location or start very close to the same location. I will end up with the same Optima

but that is probability of that happening is very small especially with large networks. So if we do

the D start will actually end up with somewhere else. Any other questions so we have till this

point we have the exam rate just checking yeah, so that is the question nobody asks how many

times do you restart right.

There when you have a budget you just say that okay I am going to restart this many times right

and yeah you might have actually re absolute minima but you may still be doing research that is

one of the reasons I told you to remember the weights right, it could very well be that the best

weight best solution, you got could have been oh the first one and then all the fuel further restarts

that you do could actually be leading to worse collisions right. So I am not guaranteeing that we

do a restart we will get a better solution the restart just allows you to explore different local

optima and pick the one that is best.

It all depends on your budget right I mean if it is it is as expensive as to train the network the first

time around right and it is really expensive to train the network if you are doing deep neural

networks because the number of parameters are really large runs into several hundred thousand

right and therefore doing are start is expensive, we do fewer of them and I also tried to come up

with other gradient descent techniques, that allow you to avoid local optima. The whole idea

behind simulated annealing is that you would want with some probability of ignoring the

gradient right.

So what the whole algorithm here says at every point follow the opposite direction of the

gradient right, you would descend the gradient direction you find which is the maximum ascent

direction you descend it right. The whole idea behind simulated annealing is to say that no I

allow you to ignore the gradient, you can move in another direction in fact you can move in the

direction off the gradient also if you want right. So the gradient opposite direction of the gradient

is a choice that is given to you can choose that or you need not choose them. As the number of

iterations become larger and larger the probability of you choosing the direction of the grade up

the gradient direction is going to become higher and higher.

This is essentially what we call the temperature parameter the temperature parameter is very high

right if you can think of this particle that is going to be jumping all over the place right, so if the

temperature is very high you can move in whatever direction you want you are not necessarily

constrained to following the gradient direction and that is the temperature becomes lower and

lower you, then you are constrained to follow the direction of the gradient .So the reason is

called temperature is because it is actually used in waddling physical systems right, so the so if

you look at the Boltzmann distribution which people typically use in this context that is actually

a parameter called temperature.

Which behaves very much like this right, so one another way to think of what the simulator and

helium will do to your error surface it is like it will pull your error surface is falt if the

temperature is very high it is like your inner surface is flat it essentially means I do not have any

gradient information. I can move any which way I want right whatever direction I move it looks

the same then I can this move randomly and then what happens I slowly start regaining the shape

of the inner surface.

So what will happen is first the deepest dink will form okay the shallower ones will still be

farther away and the deepest thing will the first tip that will appear in my error surface and

likewise as I keep cooling it cooling it cooling it will completely go back to the original inner

surface. That is one visual way of thinking about it I mean there are more formal ways of

explaining why that visualization works but I do not want to get into simulated annealing today

but that's another way of avoiding local optima okay done.

IIT Madras Production

Funded by
Department of Higher Education

Ministry of Human Resource Development
Government of India

www.nptel.ac.in

Copyrights Reserved

http://www.nptel.ac.in/

