
NPTEL

NPTEL ONLINE CERTIFICATION COURSE

Introduction to Machine Learning

Lecture 34

Prof. Balaraman Ravindran
Computer Science and Engineering

Indian Institute of Technology Madras

Artificial Neural Networks III-
Backpropagation Continued

(Refer Slide Time: 00:33)

So let Z may correspond to the output of the Mth unit in the hidden layer corresponding to the ith

input this is not the ith component of the input corresponds to the vector xi right so it is the ith

input in my training data of n elements okay and I am going to say that and Zi corresponds to the,

the entire activation of the hidden layer for the ith  input it will find so far right.

So now we got rid of over what did we get rid of here the T right so this is what I was saying in

regression Gk is linear and typically d is acting on TK right and so this is acting only on TK so

this whole thing is so because we are only talking about the question I got rid of that this will

make our life a little simpler when we write the right the gradient so I am going to take the basic



I am going to use gradient  descent right so I have squared error I am going to use gradient

descent.

So I am going to take the derivative of the error with respect to the single output layer weight

okay this is a weight that runs from some noon on Mzm right to some output K right so that is β

okay just this one, one weight I am taking here right I am taking the derivative of R with respect

to that one weight okay is the setting clear right so I am taking the derivative of R with respect to

a single weight here.

Let us just designate that as βKM so what will this be equal to yeah okay let us do it in a slightly

simpler fashion so I am going to assume that each term inside is denoted by RA then I just do the

summation  over  all  i  okay  so  that  way  I  do  not  have  to  write  the  summation  over  all  a

everywhere so I am going to say this is RA by β right if you remember the earlier that what we

had the thing that they raced here there was just this right YI-f of X into X was what we had

earlier right.

But the input in this case is actually ZM right if you think about what is there on the other end of

this weight right so the input that comes from here is actually read them right so mathematically

if you think about it just let them βm okay right so that is what is happening so essentially that is

what you are going to get so the i indicates that you are considering it only for the ith input right

this is clear so far we just then just taken a derivative right but exactly the same computation that

we did earlier the only new thing here is they are the derivative of GK earlier.

We did not have that because we are assuming that GK was linear so GK is linear this will again

vanish now comes the interesting part they will just disagreed some the single input layer wait

we will consider that so I am calling it alpha ml how will I take the derivative of the error with

respect to αml you look at the error α does not appear directly at all it appears indirectly so what is

the best way to do this name this using the chain rule.

So α is going to affect the output of the hidden layer right and the output of the hidden layer is

obviously going to affect the error right so I am going to take the output of the hidden layer right

so I am going to chain it through the output of the hidden layers are going to take those a them

might do αml and by 2ZM right so one thing to note is that αml is going to affect the output only of

ZM right it is going to affect only ZM.
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So I just need to chain through ZM okay is it clear so then let us do each one of these in turn so

this is rather easy so is that you have that already so what is the what it what if they did be more

consistent okay that makes sense right the derivative of ∑ yeah can you zoom in so the derivative

of ∑ times xil right so ∑ prime of α transpose Xi plus αo  into X al so that is essentially the, the

derivative of Zma with respect to αm it is straight forward differentiation if you are having trouble

with it I do not know now is the tricky part so I am looking at ∂RA by ∂ZM right.

So what is ZM it is the output from here right but unfortunately this K goes to all the output

neurons right so ZM can affect the output through all the output neurons okay so far there is been

a single path that we have been considering but at this point we really have to consider all the

paths of reaching the output from M okay.
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So what we really have to do is look at okay so, so ZM can affect RI through FK right so the

derivative of FK with respect to Zm and RI anybody with respect to FK that is a chain rule again

do this over all K because I can have multiple parts of reaching the output so what is ∂R/∂K okay

∂R/∂K it may which should be able to rattle it off just the derivative of GK so putting everything

together.

I can write that is a big expression and I did nothing I just took this and wrote it here I took that

and wrote it there okay I just took the product of the two terms so what we will do now is just to

introduce certain simplifying notations let us think about it I have made my job a lot simpler so

that is this term ∆K which ever define so ∂RI with ∂β is essentially ∆K into Zmi right ∂RI with

∂αml is essentially Smi into Xi that is the ∆ part right.

And there you have a β and then you have your ∑prime so this all put together gives me mass Smi

so there nothing you just applied chain rule and done some manipulation to simplify this right if

you  go  back  and  do  it  again  okay  you  will  find  that  it  is  very  straight  forward  gradient

computation but it took people a couple of decades to nearly a couple of decades to realize that

they could do something as simple as this chain rule.

And apparently this technique which is very popularly known as back propagation so why is it

called back propagation so when you take the input right and you compute the output that you

are propagating the values forward through the network right but when you are updating the



gradients so if you think about it so what you are doing is first you are computing the ∆’s right

and then you are propagating the ∆’s back through that weights β’s right.

So essentially what you are doing is ∆times β it like when you are going forward you do x times

∆ and Z times β right so here likewise you are doing something like ∆ times β right so this is

something like a back propagation of this ∆term through the weights so as to update the first

layer weights right so that is why it is called back propagation okay so the forward thing is

whatever you do this, this is the forward pass okay and the equivalent backward passes are given

by that right so the actual equations are right.
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So we still left some things in there so I left a Gprime and a ∑ prime and so on and so forth so if

G is your linear function great right what about ∑ prime ∑,  ∑ is the sigmoid function then now



you can take that derivative of the ∑ with respect to X and that is what you will get and if it is at

tan H right instead of the sigmoid if I use the tan H function then my ∑ prime will be 1-∑2V you

can work it out but sadly easy differentiation always people get thrown off my back propagation

but it  is  really  nothing but differentiation and a lot  of algebra right just manipulating things

around it is nothing more than that everyone knows the chain rules right that is it that is it, it is

just a chain rule.
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