
NPTEL

NPTEL ONLINE CERTIFICATION COURSE

Introduction to Machine Learning

Lecture 33

Prof. Balaraman Ravindran
Computer Science and Engineering

Indian Institute of Technology Madras

Artificial Neural Networks II –
Backpropagation

Now we move to artificial neural networks I suppose as a person looking at neurons.

(Refer Slide Time: 00:26)

So we are going to start hooking up neurons in multiple layers like this and the way we are going

to train this is using gradient descent right, where we are going to Train this neural network is

using gradient descent but what is the problem with using gradient descent for perceptrons the

non-linearity right. So we had a threshold function which was not differentiable for the other line

we got around it by getting rid of the threshold function altogether as I said we will use a linear

output right.

So what is the problem in using linear outputs in multi layers multi-layer perceptrons so if you

think about it let us call the first layer weights α and the second layer weights I will call them β

right, so if you think about it so what you are producing is some αT x is the output here if it did

not have any non-linearity if I just use a linear neuron the output from here will be αT x right so

that will be αT x and what will go in here Z so Y will be that which is equal to just like having

one layer of weights given by α β.

There is no point in doing all this layering so if you only have linear neurons then I do not get the

power of doing all the layering and I might as well have done a single layer of neurons, so I

really need to do something nonlinear in the middle I need to have a threshold function for me to

get the power of layering right so the threshold is actually needed but whatever we did that if I

did kept it as linear neurons run into trouble great, so we need the threshold so how do we get

around the fact that it is.

So I am going to say that okay now you get the drill so why is why I want to wake it yeah so at

the σ riser okay so σ is like a soft threshold right, so I can throw in a slope parameter here which

I have not done that will give me different rates at which this σ will assign so the actual threshold

will be that way σ will give me a soft way of doing the threshold the nice thing about the σ is it is

differentiable there are many choices that you can have for the non-linearity a differentiable

threshold function.

So the sigmoid is one of them so the thing with the sigmoid is that it will be between 0 and 1 so

if you want it to be between -1 + 1multiplied by something that will go from – 1 and + 1 right so

you could have different choices, so for the time being I will stick with the regular the sigmoid

that we are familiar with okay so each Z here, will be given will be given by that expression right

so T is the quantity that you will see that goes as the input to the sigmoid in the output neuron

redness the output from here.

From the middle are a hidden layer this one not one of this one 0 m α0 m + α mT x can you zoom

into that a little bit what is opening that can you see it better, enough people at the back who did

not complain the phones are small can you see it better now so what are you doing on the

laptoper actually seen the video feed of this or something right so that is the output of the first

layer okay and the output of the second layer is given by some other function G acting on this

input T okay right.

So like to see if anyone notices something funny actually all can be different each one of these is

a unit like this of that like that right, each one of those it is a one block this evil there are a good

point okay yes there are three layers and this is sometimes called the standard three layer

architecture okay but the first layer is really a fake layer this layer is really a fake layer it just

takes x1 and gives x1 out on all the outputs okay, this one takes x2 in and gives x2 out on all the

outputs okay this is this is really not a neuron okay so sometimes I like to call this as a two layer

network because for me there are two layers of weights okay so it is a two layer Network right

but in the literature for some reason this is called a three layer architecture.

So this is called the input layer this is called the output layer okay one in the middle is called the

hidden layer, so why is it called the hidden layer because I do not see the outputs of that layer

directly okay so they are called the hidden layer so this is called the standard three layer

architecture but there are other ways of doing it where actually you take outputs from the middle

layer as well right and we can do and we can have inputs feeding into somewhere in the middle

so you can have all kinds of craziness okay.

So the standard architecture is EC and we will stop with that okay I am not going to going to all

the crazy neural network architectures are out there so you might want to take another course on

a enhance specifically, if you want to I know more about thee all the crazy architectures outside

so there is time permitting I will come back and do something very quickly at the end of the

course not today but this is the standard architecture will stick with okay right so still people

have not told me is there is something odd about this yeah.

Lastly it always has to be linear not necessarily but it did not also be sigmoid that is why I

written it as decay, so the last layer could be sigmoid it could be linear right when we do you

want the last layer to be linear when we want it to be linear is when you want to do regression for

sure right when you want it to be a sigmoid is when you want to do classification and still people

have not told me what is odd about this I am assuming people are thinking but I am waiting for

the answer.

So that I can go that is why I am stalling yeah, so why did I write this directly as α m + αmT x α

or not m + αmT x but here I split it up into TK and FK sorry good point, but why is it TY is it not

TK so if I am doing regression I might as well do it TK right, so usually I because my regression

my regression variables right if I am doing multiple output regression okay I am not talking

about multiple input regressions multiple output regression my output variables are typically

taken to be independent right.

So min so what is the what value I predict for one I will usually does not affect the prediction I

make for the other right so I do not know if you read the book I did not I did not talk about

multiple output regression before this but if you read the book they would have actually told you

that you can do that regression independently right but if it is classification really they are not

independent.

If I am going to be outputting class probabilities right they cannot be independent right if I am

outputting class one probability is higher than class two probability necessarily has to be low

okay so I had to say do some way of normalizing the outputs to produce probabilities right, that

is why I am saying that this will operate on the entire T, I can produce a output probability vector

so in case of classification you need to operate on the entirety so we will come back to that in a

second right for classification. We will do a soft max like we did well I will just take a regression

do you remember that so E power.

(Refer Slide Time: 15:16)

Yeah so I need the ∑ over all the outputs right.

(Refer Slide Time: 15:23)

I need a ∑ over all the classes in the denominator and that is why my gk operates on T so this

will be the soft max thing, so E power TK divided by ∑e at this will be the gk of T so what will

happen if it is a single class I mean 2 class problem, it will reduce to a sigmoid it registers

sigmoid I can pick one class and have that output as the sigmoid and I can just say that okay, if

this is greater than 0.5 then it is that class if it is lesser than 0.5 this other class correct so this is a

2 class problem that gk will reduce to a sigmoid.

So if I am doing classification with only two classes I can straightaway keep a sigmoid as my

output, output neuron and then I can solve it one how many neurons I need one right suppose in

solving a three class problem how many neurons I need as output 3 and you can always have the

third one as dummy and then you can say I am going to do 1 - the sum of the rest right but if you

are going to do this right, so I can always say that okay I am going to have three outputs which

will give me the probability of each of those three classes okay.

That is typically how it is done for two you just have one right but then for more than two classes

you typically tend to have as many at the output is there any problem for doing that with doing

that think about it I am not going to give you the answer right okay, so how do we fit the neural

network parameters now and I have two layers the first layer I am into P + 1 parameters am for

right, so m for each of the hidden neurons right P for the α hems and + 1 for the α0 and in the

second layer okay likewise, so I have that many parameters that they have to fit so I have to find

all the α and all the meters so why do not you do more layers than this where did I stop with only

three layers yes so empirically people observed that it is harder and harder to train why does it

become harder and harder to train.

I will tell you in a minute okay but there is another reason for stopping with two layers right, so

if you think of these as some kind of Boolean gates right if you think of the neural networks are

some kind of Boolean gates it turns out that I can implement any Boolean function just using two

layers of neurons except that the branching will become very large right but I can still implement

any so as long as they do not give you any kind of gate with right I can have as many inputs

coming in to a neuron.

As I want and I can implement any Boolean function in just two layers of neurons so why is that

all of you know that right you can write midterm expansions right, so all of those things you

know that and so you can essentially implement it in two layers of neurons and people thought

oh, two layers is sufficient is a universal function approximator I can represent any function I

want so let me not even think of what higher layers so that is one school of thought so people

stop there but then there are others who are interested in going into more complex neural

networks.

Because they did observe that when they got it to work okay adding more layers worked well so

people kept at it and they made it work more robustly and so there like I was telling you that

third wave of mutant light works is all about having deep networks where you have more than

two layers.

(Refer Slide Time: 21:08)

So regression what will be a loss function so my I am going to say define my regression loss for

the parameters θ what our θ here all the α and β okay, so I wanted a single notation for the

parameters instead of saying α β everyday so I will say θ is given by essentially this quiet loss

that should look really familiar to you guys by now because they have been writing squared loss

almost once every class if not often so what about classification what can we use for

classification.

But 01 is incredibly hard last function to optimize array so you could use squared error itself

right so what is the rationale for using squared error same rationale that we use to linear

regression right, so why I K is an indicator variable that this one that gives you the probability of

this particular data point being class K right and you are trying to fit the probability anyway that

is what you are trying to fit and therefore for every data point you can take its probability of

being class case 1 or 0.

And then you can try to do some squared error and try to make a prediction okay that is one way

of thinking about it the other way is to use what is called the cross-entropy error or the deviance

which is related to whatever we did in logistic regression, so here I will define my so we will all

put the problem the actual class table as the one that has the highest FK of x like we did in the

discriminant based classifiers except that FK of x is no longer a simple discriminant function

right.

And so this is essentially a error term okay that stands in for likelihood that we maximized

earlier, so and to optimize this error term we will essentially train the neural network using

maximum likelihood right so I am not going to go there so we will look at a more popular more

mechanism for training neural networks which essentially looking at the gradient the squared

error and do very indifferent okay.

IIT Madras Production

Funded by
Department of Higher Education

Ministry of Human Resource Development
Government of India

www.nptel.ac.in

Copyrights Reserved

http://www.nptel.ac.in/

