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So if you remember I asked you to note the fact that I am using a inner product they are right xi

transpose X is less the inner product of two vectors and the way I wrote the dual also I had only

inner products in there right so in fact if I want to evaluate the duel I need to only know the inner

products of the two vectors likewise if I want to finally evaluate them use the classifier that I

learn I still need to only find inner products right.
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So if  I  can come up with a way of efficiently  computing this  inner products right  I  can do

something interesting so what is that so what do we normally do to make linear classifiers more

powerful basis transformations this is somebody said basis transformation right so I can just take



my hedge right replace it with some function H of X that gives me a larger basis right it could be

just replace it with the square right.

I take X and replace it with x2 right and then I will get a larger basis and now it turns out that i

can do a lot of math but I can get up get with get a duel that looks like this so that is the inner

product notation right so if i can compute the inner product so i can just solve the same kind of

optimization problem right but I can do this in some other transformed space okay.

So likewise our f of X is going to be so essentially what I need to know is Hof X for whatever

pair X and X prime that i would like to consider right so in the training it is the paths of training

points right while I am actually using it is one of the support point and the input data that I am

looking at right so at any point I just take this pairs of data points and I need to compute the inner

product right.

So I am going to call this as some function way which is a kind of a distance function or a

similarity measure between H of X and H of X prime right such similarity measures are also

called as kernels right so kernels or nothing but I mean so we might have heard of kernels in the

context of support vector machines we have been trying to use this VM or any of the other tools

for some projects over the summer you have heard of kernels right kernels are nothing.

But similarity functions okay so the nice thing about the kernels that we use right is that they

actually operate on X and X prime okay they operate on X and X prime but they are computing

the inner product of H of X + H of X prime did you see that they are going to work with X and X

prime right but they will be computing the inner product of h of x + H of X prime.

So I will give you an example so the kernel function case should be symmetric right and positive

semi-definite okay positive definite semi definite is fine in some cases positive definite people

number remember what positive definite is right, right and that if it is semi definite it essentially

we want the quadratic forms to be to be positive.

We do not want to take X transpose ax and suddenly find it is negative so it is in fact you

remember I told The X transpose AX is usually the quadratic form that we are trying right and

that will actually messes up big time in the computation if the quadratic form becomes negative

then  we love  problems  in  all  the  optimization  thing  going through  okay so  that  is  the,  the

mechanistic exam reason for wanting it to be positive semi-definite.



There is a much more fundamental reason for it which I have not developed the math or the

intuition for you to understand so it has to come at a later course so hopefully in the kernel

methods course if you are taking it you will figure out why that is needed okay so there are many

choices which you can use for the kernels so the something called the polynomial kernel which is

essentially  one plus inner  product of X, X prime the whole raise to the power D so D is a

parameter you can have D of two three four you can even have D of one is essentially here

whatever we have solved.

So far  right  you could  have  D you two three  four  whatever  and this  h1 is  some called  the

Gaussian kernel or the RBF kernel right so where the, the distance is given by E -γ X-X prime

square  norm  of  X  minus  X  prime  squared  is  essentially  the  Gaussian  without  here  the

normalizing factor right so that is why it is called the RBF kernel so if you want to call it the

Gaussian kernel you actually have to make it Gaussian otherwise called the RBF kernel.

And then this is called the, the neural network kernel or the sigmoid kernel sometimes not just

the hyperbolic  tangent  right  this  is  coppa one and Coppa two some constant  some arbitrary

constants k1 and k2 which are your parameters attitude and this is X, X prime inner product okay

so these  are  some of  the  popular  kernels  which  can  be used  for  any generic  data  but  then

depending on the kind of data that you are looking at right where the data comes from people do

develop speech the specialized kernels they for examples for string data people have come up

with a lot of kernels.

When you want to compare strings how do I look at similarity between strings so the nice thing

about whatever we have done so far is that you can apply this not just to data that comes from RP

right you been assuming so far that your x comes from some dimensional real space as long as

you can define a proper colonel right you can apply this, this max margin classification.

 That we have done to any kind of data does not have to come from a real-valued space okay

which is not true of many of the other things you are looked at right all those inherently depend

on the fact that the data is real value right because of this nice what is called the kernel trick right

so you could do all of this nice things so as long as you can define appropriate kernel that you

can actually apply this to any kind of data so that is one very powerful idea.
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So just to convince you so let us look at the polynomial kernel of degree  two right operating on

vectors of two dimension okay there are 2 2's here ok so the degree is two the D is two and the P

is also two but they need not necessarily be the same that I could have had a much larger thing

over to CC for me to write something so this is what 1+ right now just squared it now if you

think of h plus the following right.

So what is this function H it is essentially the quadratic basis expansion right so i have two, two

features  x1 x2 right  so  i  give  so  remember  that  X,  X is  X1 X2 right  they  consider  of  two

coordinates x1 and x2 right so this is essentially the quadratic expansion the first thing is one the

second coordinate is x1 third coordinate is x2 so it keeps it as it is okay then fourth coordinate is

x1
2 first coordinate is x2 the sixth coordinate is x1 x2 it is done all the quadratic basis expansion

right.

 Now if I make this operate on X and X Prime and take the inner product so what will be the

terms 1,2 x1, x1 Prime 2 x2, x2 prime X1
2 x2 x1 prime squared right x2, x2 prime the whole square +

2 X1 X1 prime X2, X2 prime is exactly what we have here right so what is the nice thing about it is

I can essentially compute the inner product of X 0 X and X prime first add 1 and square it so

numerically what I will end up with is the same as what i would have ended up with if i had done

the basis expansion right and then taken the inner product that makes sense right.
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If i had just taken whatever is a vector so original vectors let us say I have some 2, 3and 4,  5 so

instead of doing this basis expansion and then computing the inner product right I can just take

the inner product right away  right this license t2
2 this answer so this well for degree to it might

not seem great what about degree15 polynomial  I  have essentially  doing similar  amounts of

computation except that I have to rise something to the power of 15 right so is any questions.

 So far any questions so far they are all good there is expansion Air services expansion is if you if

you thought something else about basis expansion please correct it this is business expansion

right so i take the original data okay I then since I said you could have a new component set or

sine  x  cos  xi mean  does  not  matter  right  you  could  think  of  variety  of  different  ways  of

expanding the bases in this case I am just doing the quadratic basis expansion right is it clear to

people.

So whatever we have done so far and so this whole idea for kernel and other things are arriving

rather straightforward so what I cannot right now for you is what is the basis expansion for the

RBF kernel it turns out that the computation is doing is actually in an infinite dimensional vector

space okay so here the computation is a six dimensional space and I took some data point from a

two dimensional space computation in a six dimensional space right.

And I gave you back the answer but all the time doing computation only in a two-dimensional

space and I only took the inner product of these two and then added 12 so I am essentially doing

computations only are too right well the actual number i am returning to you is the result of



computation done in our six that is why it is called the kernel trick right so likewise the RBF

kernel I will do something in whatever is the original dimensional space.

You give me but the resulting computation has an interpretation in some infinite dimensional

vector space case it is not even easy to write it down so that is why the RBF kernel powerful they

work on a variety of data right but they are not all powerful this have to be careful about it right

so,  so  that  is  all  there  is  to  support  vector  machines  so  we  have  done  this  support  vector

machines as well.

 So I don't know if people who have used lib base VM or one such tool for that for most RBF

kernels you would have to tune two parameters one is C which we already saw right that is

essentially how much penalty you are giving to the thing other one you will tune is γ essentially

this right it is some kind of a width parameter for your Gaussian this how wide you are Gaussian

is it just it is control set so that is γ so those are the two parameters you tune and for polynomial

kernels you have a D and you have your C right and for Sigma L kernels you have constants k1

k2 and you have C and this form of defining a support vector machine is called as CSVM okay.

There are other ways other constraints that you can impose on it not just the penalty on the Z's

you can impose penalty on the number of support vectors you consider right you want to say so

suppose I run the data and it comes back and says okay everything is a support vector right so

that is not something interesting how can everything be a support vector can all the data points

be equal distance from the separating capita not if you are considering linear but when I am

considering RBF kernels right the separating hyper plane can be very ,very complex right.

So in which case you might end up with a lot of support vectors typically i do not know if you

have not thought too much about it and you are setting some very high values for C and trying to

run this thing you will end up with like sixty percent of your data as being support vectors so

instead of trying to do that empirically second on why only 120 support vector so let me try

different see differential γ and so on so forth you can use something called the new SVM new

not new the Greek new SVM which gives you a upper bound on the number of support vectors

you are going to get you can say do the best you can but do not give me more than 30 support

vectors something like that to that effect okay.
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