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So  this  is  the  optimization  problem  which  is  actually  a  simple  optimization  problem  is  a

quadratic objective okay. And a set of linear constraints right we already saw how to solve this

you guys did right so you had a convex optimization tutorial. So one of the things that we are

looking  for  from the  convex  optimization  tutorial  is  that  you  will  know how to  solve  this

problem. so I say what we do after this, write the Lagrangian right. 
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Fine, (1 – y) take the -1 is greater than equal to 0 when this is right. So right so I have to apply

this for every data point so I run runs from I am I equal 1 okay. And I put a p there so so there is

a primal so we will have to form the dual of this the dual looks a lot easier to solve okay duel is



actually a lot easier to solve. So we will go ahead and do the duel, so for first I will set, I  will

take the derivatives right.   

So derivative with respect to β and you can do that and solve it we will get that derivative with

respect to β0 so now is where I'm going to do some hand waving but you can go through this

computation  so  take  that  substitute  into  this  okay.  And do a  lot  of  simplification  rights,  so

remember we have this β squared here therefore I am going to get a αi αj yi yj kind of terms right. 

So the duel will be so the duel is going to be a slightly simpler form why is it a slightly simpler

form, so I have to only consider my constraints have become of lot simpler here right it just

going to be α is should be non-negative that solves my constraints are so it turns out that there

are efficient ways of solving optimization problems of this form right, you do not have to worry

about it. Here are lots of packages that solve this seems for you. 

But then Jesus you need to know what see optimization problem we are solving. I do not want

you to use it as a black box. Essentially what you are going to be solving is this right. So when

you have a solution,  when you have something that is both primal  and dual free so we can

actually show that the duality gap is 0 in this case so it is not going to that. But the points when I

have a solution to the problem right it has to satisfy certain conditions. 

It is already looked at that the KKT conditions if people do not remember it please go back and

revise that right. So there are a whole bunch of things so you need to for you need to have the

solution to me primal feasible right. You need to have the solution to be dual feasible right and so

that essentially have a bunch of things right. Primal feasible would mean that well your αi is

have to be great that will be dual feasible way that will be one condition this
. 
These need to whole right because it is a solution for the primal and there you are you have your

complimentary slackness right. So that in this case becomes right. So, so I know if in the notes I

think you saw it as λ IFI right. So this essentially that is it so this is α I into fi right. So this is this

may affect so that is the fourth these are the KKT conditions, that need to be satisfied okay. And

so what does this tell us? 

This is a couple of things one so we know what the form of β should be what is the form of β it

has to be αi yi  xi right. So it is essentially what you are going to do is your β will be taking out

certain data points from your training data right and adding them up. So suitably have been



multiplying it by the output the desired output, so if excise output was positive then this will be

+1. If xi is output was negative this will be -1.

So it is going to take a few of those and they are going to add them up right. So this should

remain you of perceptrons, so if you remember what we did in perceptions is we took whatever

was misclassified we just kept adding it to the weight vector right. So in some sense you are

doing something very similar to that but instead of having some kind of a heuristic approach to

optimizing things right. 

We did do a gradient descent right but then we just said ok we will arbitrarily pick the set of

misclassified points and we will do the gradient descent and so on so for. But here we started off

by saying okay we will minimize the distance to the closest point and from there we derive

something and it looks very suspiciously like the perceptrons update rule okay. In fact nowadays

when people say I am going to train a perceptrons. 

They are actually doing this more often than using the perceptrons learning rule right way. So

now something else that you can observe, so this condition has to be satisfied. This condition has

to be satisfied. So let us look at it there are two terms here so when will this be 0when either this

is 0 or that is 0 right. These are some condition when this has to be 0, sorry for what constraints

okay fine but geometrically can you give me an answer. 

Yeah! You are right but for geometrically can you give me an answer. So if this is when this has

to be zero is when this guy is not 0 done right. So when will this gave me not 0, when it is not the

closest point right. If if xi is the closest point it will be bang on the margin right for a point here

that term will be 0 right. For a point here that term will be greater than 1, right or appoint here

the term will be greater than1. 

You see that so since the term will be greater than 1 the term in the square brackets will be non 0

so α is have to be 0. Correct, so what does this mean it means that points that are further away

from the hyper plane do not contribute to finding β. Because the αs will be zero points that are far

away from the hyper plane are not going to contribute in finding β. In fact the points that will

contribute to β are exactly those points that are on the margin. 

So in fact for this, this data set that they drew here right. Then only two important points at that

one and this one, because only two points are on the margin right. That makes senses such points



which lie on the margin are known as support points or support vectors right. And your β is

going to depend only on the support points, what about β0 okay. So we can plug in any data point

here, and we can solve for β0 right. 

One of these support points you can plug it in here and you can solve for β0 right. Which support

point do you pick, ideally all of them should give you the same answer but usually does not

happen because of numerical reasons. So what typically people do is they plug in all the support

points okay. Solve for β0 and take the average right. So each one in turn it for every support point

you are going to get slightly different β0 you just take the average okay. 

So that is how you compute the hyper plane at the end of it is basically how here. Yeah p as it is

that 50 it is potentially suppose so when would α be 0? If your data is on the hyper plane then on

the merge sorry yeah! So that will be one case when that happens. Essentially you have two

points which are on the same. It is not collinear but repeated things; I give you two data points

that are on the same point right. 

So by definition most of the support vectors will lie on the same line so it cannot be collinear

okay. So right in such cases that could be the case but, yeah! These are generally degenerate

cases yeah! So sure call them support vectors. If you want yeah! So one thing to note is my F hat

right. So how this going to look like now that I given the form for β here. This is essentially

going to look like I can flip these things around anyway that plus β0 right. 

So, so if you think about it I will come back to this point later so if you look at the duel I only

have X XT X right and if you look at the final classifier I am going to use I am going to have XT

X right so if i have a very efficient way of computing X XT X right I can do some tricks with this

whole thing we will come back to that okay. I will just I want you to remember this so any

questions on this, any questions on this? 

So before we move on I just wanted to point out something so if you think about, how LDA

works right. So LDA tries to do density estimation eventually right, if you if you think about it

you  make  some  assumptions  about  the  probability  distribution  the  form  of  the  probability

distribution. What assumption will you make; it is Gaussian with equal covariance across all the

classes’ right. 



Though, that essentially means that every data point in your training set is going to contribute

towards the parameters that you are estimating right. So the β will estimate there will depend on

all the data points that were given to you, whether they are here right. Close to the hyper plane or

whether they are very far away from the hyper plane. Let us all the data points will determine

your class boundary, so that means that it becomes little susceptible to noise. 

And if  I  have  one  or  two data  points  that  are  generated  through noise  right  even that  will

contribute to determining the separating plane hyper plane right. On the other hand we test with

this kind of optimal hyper plane we are only worried about points that are close to the boundary

right. So I can do whatever I want here right I can change move a few points over here and

things like that it does not really matter. 

What matters is if any noise enters close to the boundary right. So that so in some sense if my

noise is uniform right the LDA will get more affected. Because even if noise insert some points

there right LDA classifier  will  change right.  Well  my optimal  hyper plane classifier  will not

move it will be affected only by that fraction of the noise that changes the actual decision surface

right. 

They make sense having said that I should point out that if, if your data is truly Gaussian with

equal covariance LDA is actually optimal. It is probably optimal. While this one will depend on

the actual data that you get but in general would say this is more preferable because this is more

stable.  People remember what stability  is right;  small  changes in the data will  not cause the

classifier to change significantly right. 

So here small changes in the data will not cause it to change significantly in an expected sense

right. If I go and take the support vector and move it somewhere else okay. The class is the class

boundary will change right. But then I have whole bunch of other vectors which I can move

around nothing will happen to the class boundary unless I move it closer to the hyper plane than

the existing support vectors right. 

If I take a point from here and move it here of course the class boundary will change. As long as

I do not modify which are the support vectors right I will get back the same classification surface

again and again all right. So in that sense SVM or will come to SVM little bit, this kind of

optimal hyper plane are very stable right okay. So any other questions this move on.
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