
NPTEL

NPTEL ONLINE CERTIFICATION COURSE

Introduction to Optimization

Abhinav Garlapati

Introduction to Machine Learning
29th Jan 2016

Hello everyone I am Abhinav in this unit we will be covering the basic concept of optimization,

which should be useful in this course.

(Refer Slide Time: 00:26) 

So before going in to detail a small disclaimer this tutorial is meant to be a small introduction for

a complete understanding of these concepts please refer to any standard text book.
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This tutorial is broken in to five chunks first let us start off with the introduction.
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What is mathematical optimization? Mathematical optimization according to keep it here is a

selection of a best element with regard to some criteria from some set of available alternatives,

now let us look at the mathematical formulation for the same, here we are trying to minimize f0

(x) subject to m constraints of the form fi of x less than or equal to bi. F0 is also known as the

objective function fi are the constraints and x is known as the optimization variable.
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X is known as the solution for the problem if it is satisfies all the constraints and it minimizes f0

of x such a solution is known as the optimal solution and it is represented by x* so through all this

tutorial whenever you see x* it represents the optimal solution for the optimization problem. 
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Now let us look at some examples where optimization is use first data fitting, data fitting is a

very common problem in the field of machine learning, what I mean by data fitting? Data fitting

is fitting of a parametric model given some data. So one’s is example both linear regression in

linear regression we are trying to fit a linear model whose parameters are β is, so those translate

to the optimization variables here.

And  constraints,  constraints  in  general  include  something  like  parameter  limits  or  prior

information which already include, so what is the specific example of linear regression we do not

have any constraints. And what would be the objective? You would try to fit get the best fit for

the model so one way of doing this would be minimizing this error and in linear regression we

have seen how see to minimize this squared error.

So that  forms the  objective  of  the  optimization  problem,  another  example  of  application  of

optimization is portfolio optimization.  So by portfolio optimization we mean to optimize the

amount of money I can invest in various assets so these assets could be something like shares

from different companies or any other investment options, so the variables would be the amount

I invest in all the options available the constraints would bead it overall budget the maximum or

the minimum investment per asset.

And the minimum return I expect from each asset, objective would be to minimize overall this or

minimize the return variants you have seen what optimization problems are and you seen some

examples. Now the next big question is how do we solve them.



(Refer Slide Time: 04:08)  

Optimization problems very difficult  problems to solve in general  optimization problems are

classified in to different types based on the properties or objective and constraints the some of

the  examples  are  linear  programs least  square  programs and convex  optimization  problems.

These problems are well studied and can we solved efficiently not all class of problems can we

solve very efficiently. When this tutorial we will be covering convex of machine problems in

detail.
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In this tutorial first we will be looking at convexity what convexity means and how do we define

it, prop then we will look at properties of convex functions and then we will look at properties of

convex optimization problems. And at the end we have briefly cover some numerical methods

for solving optimization problems. 
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A set C is set to be convex is for all point a, b belong to the set the lines segment passing through

this points should also lie inside the set, so mathematically we can see the asset all the points of

the forms θa + (1-θ) b, when θ lies in the close interval 0 to 1 should also belong to the set C.

next let us look at the definition of convex combination. A point of the form θ1 x1 + θ2 x2 so

what it θk xk such that the coefficient some of 21 and the coefficients are non negative is known

as the convex combination of this k point.
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Now let us look at examples of convex set this pentagon is a convex set because any line joining

two points inside the set lies inside the set whereas this set is a non convex set because this lines

are going with joints 2 points here passes outside the set, thus theses points do not lie inside the

set hence this does not satisfied the definition of convex set right it is not a convex set.
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Let us look at the definition of convex function a function f is set to be convex if the domain is a

convex set and if for all x, y which belong to the domain f the convex the value of the convex

combination of these two points is less than or equal to the convex combination of the values at

these individual points so what I mean is F of θx +1-θy that is the value of the function for the

convex combination of these two points should be less than or equal to θf of x+1-θf of y this is

the convex combination of the function values at these individual points.

So geometrically you can see that the line joining x, f of x and y, f of y should lie above the curve

so if this happens we can see that the value f of θx +1-θy is are the points along the curve and θf

of x +1-θ f of y are points along the line segment joining x of x and y of a y so by ensuring that

this  always above the function we ensure that the inequality  holds this  making it   a convex

function.
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Now let us define what is strictly convex functions is in strictly convex functions the inequality 

becomes a strong in equality that is f of θx+1-θy is strictly less than θf of x+1-θf of y and now let

us define what is concave function is a function f  is said to be concave if –f is convex and then 

similarly we define a strictly concave function a function f is said to be strictly concave function 

if –f is strictly convex.
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Now let u look some examples first f of x =x2 is a convex function from the graph it is clearly 

evident that any line joining two points this will lie above the curve between these two points 

this line can also be verified by using the definition.
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The next example that we see is graph of f of x= ex again graphically you can clearly see that this

is the convex function if you try to prove this according to the definition you can see that this is 

not tribunal so we would like to see if any other ways to check the convexity of function.
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Let us look at the first order condition for the convexity let f be a differentiable function that is

grade f exists for all x in a domain of f so our function f is convex if and only if the main of f is

convex and this equality satisfy this inequality states that function should always lie above all it

is tangents if you look at the right hand side carefully it is i nothing but the equation of the

tangent at X / F of X and we expect this value to be less than F of 5 this is nothing but the

condition saying the preclude is about the tangent.
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Now let us look  te same condition convex sity let F be twice diffrence which isd the function

and the F wil bew convex and the diffrent of the layer and the main of the F is convex and the H

C F is positive and it is so if ypou look at the second example of the heat power and the X the

second derivative is always positive hence it can be prove that in to the convex function 
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Now we defined a big graph of function for a given function f epi graph of f is defined as the set

of all pairs x committee such that x belong to the domain of f and t is greater than or equal to f of

x so if you look at the graph you can see that t area above the curve is belongs to the epi graph of

the function. One important property to know is for a convex function the epi graph is always a

convex set at the convex also holds statist if for a function the epi graph is a convex set then the

function is convex.

So we till now we have seen three ways of checking for convexity of a function first you can do

the first order test or the second order set or you can check for convexity of the epi graph of the 
function.

(Refer Slide Time: 12:07)



Now let us look at what is sublevel sets of functional in alpha sub level set of a function F is set 

of all pints x which belong to the domain of F such that the value of the functional least point is 

<= alpha there is one important property that if the function is convex the sublevel set sets of the 

function are also convex it is important to note the converse is not true. 
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Now let us look at some other properties of convex functions first we will look at the function

operations which preserve the convexity of the function first non negative weighted sum that is a

non negative weighted some of various convex functions which still the main of convex function

consider fi is the series of convex functions σ α f5 where α is are greater than 0 will also remain a

convex function next composition with defined function a fine function is a linear transmission

of x so x + b is an fine function if Female Speaker: convex then f of x + b is also convex, point

wise maximum and supermum of to convex functions will also remain convex minimization.

If you look at as two variable function f x , y which is convex then if you try to minimize the

function allow any one variable in a convex x which resultant function is also convex function

the  most  important  property  of  convex functions  extracting  local  minima  is  also  the  global

minima is a very powerful result which can proved easily this result grantees that the minima

option while searching for the minimum of a convex function is  the optimal  solution as the

important property of convex function is that they satisfy the general in equality which we have

seen in the definition of the convex we n points so d value of d convex formation n point is less

than equal to the value of the convex combination of n point is less than or equal to the convex

combination of the values each of the function at each of the individual points. A local we are

saying this is this the value of the average is less than the average of the values. Here by the

average I mean a weighted average. 
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Now let us look at a general optimization problem, any optimization problem in generally can be

reduce to this firm of minimize an objective function subject to few in equality constraints and

few equality constraints. So the optimal value P* can also be return as inhume of f0(x)  such that

fi(x)<=0 for I = 1to m and hr (x) =0 for i=1to p. now the next question is why did arrived infimum

instead of everyone. 

In some function the minimum might not be attainable; it might just to 1to minimum value bit

not actually attain it. Hence we write infimum instead of minimum. 
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An optimization problem with satisfies the given three condition is not as a convex optimization

problem. So first f0 the objective function should be convex then the equality constraints fi should

also be convex. And the equality constraints should be a fine. When I say a fine it should be at

the form Ai
T x =Bi  so one can observe that the domain has become a convex set right now. So

these equality constraints represent a sub level of a convex function so it is a convex set. 

And a convex set intersection with a find function is a convex set. So why a convex problems are

so interesting, so convex representation problems are interesting because with the properties of a

convex functions and the convex set so first the most important property which is useful for us, is

that the, if there is local minima anywhere. It is guarantee that is the global minimum for the

function. So it makes are like very simple and we do not have search a lot for global minimum.
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Every optimization problem can be seen in to perspective, one the prima form and the dual form,

so whatever we seen to learn it generally known as the primal form, and we will now develop the

dual form. So why do e need another view of the problem, so sometimes the primal form might

be very difficult  to solve it.  So the dual form might be easier to solve and also cases some

understanding on how the solution of the primal form may be.

So before going at which is recap the notation which we going to use. So this is the standard

optimal convex optimization problem and when I said P* it denotes that the optimal value of this

problem and the value of P* is attained at X* which is the solution of a solution. Now let us

consider the alternative relax problem. Instruct the minimizing the f0 will may the weighted some

of the objective functions and the constraints. 
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So will minimizing f0(x+∑ λfi +∑ μihi) here we also have an addition constraint that λ should be

greater than or equal to 0. And as usual x should belong to the remain we call the object of this

optimization of this optimization problem as the Legrangine so L is a function of x λμ is defined

as f0+∑λfi  + ∑μi  hi.  Infimum of the Legrangine over x is less than equal to P* this can be seen

very usually, but think to be noted as in equality is valid only one x is feasible. So now to find

she as a function of λμ as the infimum of the Legrangine over x. 
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So we have seen of a function g which cases lower bound of the optimal value of the primal

problem. So if you try to maximize the function g will achieve a very good lower bound of the

optimal value. So this is what is may known as the dual problem, so maximizing g of λ column μ

such that λ<= 0. The optimal value of the problem is attain it λ* and μ*, we can see that this

function g is conquer is respect of the form of the primal problem. So if you go back and see we

started with the general form of primal problem and we achieve, when reached with g which is

conquer. So g can always be solved the optimum value of the dual problem is denoted by d* so

now we would like to see how far is this d* from the actual value p* so p* - d* is know d / d^.
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The next obvious question is  to find out when this  p* -t* will  be 0 and when it  is  back so

whenever it is 0 it is known as the strong duality and when it is not it is known as the weak

duality, so next we will try to further characterize when what can occur so first decide we can see

that d* can be written as in few know verse of L and d* can be written as supreme over of L or

appreciate variables, so when this strong duality holds we know that p* = d* so you can see that

the order of the in human supreme can be interchanged and it is equivalent.

So this means that at the same point we have maxima in one direction and the minima in another

direction so it is a saddle point, so we have one good result here that is whenever that is strong

duality optimal variables occur at the saddle point of the Lagrange.
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Now let us look at sufficiency conditions for strong duality so we look at slates conditions which

gives us conditions for a convex optimization problem to be strongly dual so Slater’s conditions

states that for a convex implies volume if the existence at such that it belongs it the relative

interior of the domain such that fi(x) is less than 0 and hi(x) = 0 then strong duality so here we

require the inequality constrains to be strongly strictly unequal and the function should be the

point should  belong to the relative integral and not the boundary.

So Slater’s conditions state that for any convex optimization problem if that exits a point inside

the feasible region then strong duality surly holds so note that this is only for convex of and not a

general result.
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So now we look at complementary slackness assume strong duality holds and x* is the primal

variable and λ* also dual variables so when I say strong duality holds we know that f0 at x* - g at

λ* and f* okay so by expanding gr by it is definition and looking at some simple inequities we

can reach to a conclusion that for all I λi * fi x* should be 0 okay so basically we know that

fi(x*) is ≤ 0 because x* is a feasible value so whenever fi(x*) is not equal to 0 we know that λ it

should be = 0, so this is known as complementary slackness that is either λ is x* = 0 or fi(x*)

should be = 0 then strong duality holds.
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Now we will look at Karush Kuhn Tucker conditions also known as KKT conditions so these

provide us the necessary conditions for a point x* λ* μ* to be optimal so consider any point x*

λ* μ* if it has to be a optimization these things have to be satisfied so first stationary so since

you already seen that at the optimal point l as saddle point so the gradient at that point should be

0 so that is prevail to C n primal feasibility and dual feasibility should hold that is also of a vies

and then you have seen complementary Slater’s as you seen previously we also be valid at this

point.
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So just to reiterate what you already seen if x, λ, ν satisfy strong duality then KKT conditions

hold so these are just necessary conditions and sufficient but further optimization problems when

Slater’s conditions are satisfied then KKT became sufficient also.
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Now we locate some examples first is the most popular example of least squares, so we are

trying to minimize a least square function so we are trying to minimize a least square function so

we are trying to minimize this two norm of x – v with new constraints so we can clearly say that

this a convex function and there is no constraints and we solved in this thing in while solving

linear regression to give x* as AT A inverse AT b, so this is a very tribal convex or machine

problem which you are able to solve I, but just by differentiating.
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Now let us look at another example, so here we are trying to minimize x12  + x22  subject to two

these two linear quadratic constraints so you look at these constraints carefully both of them are

circular regions one centered at (1, 1) and the other centered at (1, -1) each of which is radius at

one, so if you just plot them and see that you can see that there is only one feasible point that is

(1, 0) so trivially the optimal value will become one.

But now let us do analysis which we have learnt and how to do and then try to analyze in this

answer, so first when you have a convex of machine value or for that matter any of machine

balance like you have the first thing you do is write that like Lagrangian so here the lagrngian

will be x12+ x22 + λ1 times a first constraints next λ2 time the second constraint.
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So now that you see in lagrangian let us try to list out the KKT conditions so here the first two

are the primary feasibility conditions second to are the dual feasibility conditions and the next

two are obtained by differentiating the lagrangian with x1 and x2 respectively and the next one

are obtain by writing the complimentary strategy equations. And we have seen that there is only

one  feasible  point  (1,  0)  and  at  that  point  b  these  conditions  are  not  valid  with  you  get

contradictory answers for λ1 and λ2 and you try to solve.

See that is KKT conditions are not valid but this is tricky so we have already seen that we have

an optimal value but KKT conditions are not satisfied we will try to see why this is happening

here. Now let us try to investigate what exactly is happening so we will try to solve that your

problem now.
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So for solving the dual problem we have find the maximum of a G, so first lt is find out what the

function G is, G is in few form of the lagrangian over x so we will substitute we will try to take

the derivative of L with respect to x solve it and then if we arrive at this G function which is the

function of λ 1 and λ2 now you can see that this is a concave function which is symmetric λ1 and

λ2 so we can substitute this λ1 =λ2= λ1 and the go ahead, so when we do that we get this 2λ1 / 2

λ1 + 1 as that g function. So if you see that under the limit λ1 10 into ∞ g turns to 1 but otherwise

there is no maximal sheet.

So under a simple conditions p* = d* = 1 and because this is these points are not been attained at

point KKT conditions latest conditions are not satisfied, so this example just to show you that

just solving KKT conditions are checking first latest condition is not sufficient we might have to

solve sometimes the dual problem and see what exactly is happening.
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So do you see the mathematical characterization for optimization problems, now we will try to

see how to solve  them so there  exists  very  many standard  algorithms to solve  optimization

problems once you taken them to standard form, so for linear programs there is this feel known

simplex method and the most popular methods for solving general optimization problems right

now are interior point methods, will not be covering in these methods in detail at all will be

looking at simpler class problems that is, optimization under no constraints, so that is given an

objective function under no constraints, how can we solve this? 

We will look at algorithms, so to do this there exist a lot of algorithms; gradient based methods,

genetic algorithms and simulated annealing. First we will look at gradient based methods which

are very popular used in machine learning.
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So first let us look at proper mathematical definition of unconstrained minimization. Consider a

convex which twice differentiable function is and we want to find minimum at of this function,

so assume there is minimum and it is finite and it is attained by a, so we want algorithms, start

from one point  and give a  series of  exercise,  such that  value of  f(xk) tends  to  this  optimal

minimum. So these algorithms required one condition that is the sublevel set should be closed. 

So what exactly this condition means is, so when I start from x0 and I go to some other point is

which is < then so basically each time I am trying to reduce the value of f, so x1,x0 to x1 where

f(x) 1 < then f(x) 0. So that is, this belongs to the subset of f at f(x) 0 and this point x 1 should be

inside the set, so we just need this condition, so that we get a chain of points, which are in the

domain of the function.
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So now we will look at what are the most popular algorithms gradient descent, so this works in

convex problems where there exist in minimum and you start from one point from the top and go

down according to the gradient,  so if you see this  visualization gives you the 3 dimensional

surface, which is basically f(fx), x2 say. So if we start of f(x, x2) at the top point and we take the

gradient there and move along the negative direction slowly.

As we keep going down we reach the bottom of this, so and the bottom is where the minima

exist,  at  the last  point the gradient  become 0.  So this  is  the motivation  for gradient  descent

algorithms that is by going along the negative direction of the gradient, we reach the minima in

convex functions.
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 So let us formally look at the gradient descent, we intuitively seeing that if you move in the

direction of the gradient we will reach the minima, so will stay at the algorithm,. So if we start x0

in the domain of f, you can update in every iteration x as x= x+ ∆- f(x). so essentially what we

are doing is, we are moving along the negative direction of the function. in some step size of t,

basically this t is the multiplication factor, which will magnify or minimize steps that you are

taking in the direction.

So the next question is how do we choose t? Should t be constant, so in the ideal case t should be

depended on the curvature of the functions? So if you look at the graph in the previous slide

carefully, so where ever there is low curvature you could afford to take larger steps, where ever

there is high curvature at the bottom especially where there are minima, you should take small

steps, so you do not jump over the minima value.

Methods which choose t according this are out of the scope of this tutorial, so but we will just

answer this question, is t constant is enough for us. In most conditions a small t if you take a

small enough step size it is find and you will very reasonably very close to the minima. So in

practice the constant t works. So we will end this tutorial session with this. So the main take

home of this tutorial session should be, what accomation problems are? What is the generous

form? What are convex formation problems? What is duality? What is strong duality? 



So knowing these will be enough for you to navigate, whatever the optimization that come across

this course but ideally we can look up other resource o line if you are not clear with these basic

still.          
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