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Right so D is a diagonal matrix right where the diagonal entries are your Eigen values if ideally

or  otherwise  known  as  singular  values  right  V is  a  V is  at  P x  P matrix  which  has  your

eigenvectors and u the n x P matrix which typically spans your column space as x the same

column space as x okay so this is essentially your singular value decomposition that we talked

about so.
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So if you if you look at singular value decomposition or what is called the principal component

analysis  literature  you  will  find  the  following  you  will  find  that  they  will  talk  about  the

covariance  matrix  yes  okay  what  is  the  covariance  matrix  is  a  covariance  matrix  this  is

essentially if you think of whatever we have been doing, so far what would be this centered right

it is centered so I take the centered data okay then this becomes this right so x tends to l then

what  I  do is  I  find the Eigen decomposition  of  that.  I  find the  Eigen decomposition  of  the

covariance matrix right.
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So I can essentially write this as so the same V and D that I wrote here assuming this was okay

so if I take XC so basically I am going to get the same thing right so it is essentially like doing

singular value decomposition right and retrieving the V matrix right I am essentially taking the

xTx which is the covariance matrix of the centered data okay and I am finding the Eigen valued

composition of that so D2  would be the Eigen vectors of xTx so this is standard self you should

know okay.
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So the columns of so they are called the principal component directions of x. So there are a

couple of nice things about the principal component directions, so we will talk about just one so I

will  actually  come back to  PCA slightly  later  right  when I  talk more about  generally  about

feature selection not just in the context of regression but when I talk with generally about feature

selection I will come back to PCA and tell you at least show you why PCA is good right now I

will just tell you why PCA is good I will come back later and then I will show you why PCA is

good right.
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So suppose I take so where V1 is the eigenvector corresponding to the first Eigen value right

eigenvector  corresponding  to  the  first  Eigen  value  so  essentially  what  this  means  is  I  am

projecting my data x on the first eigenvector direction okay so the resulting vector Z1 okay will

have the highest variance among all possible directions in which I can project x right.
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So what does that mean right suppose this is x okay this is not x and y okay so it is a two-

dimensional x this is x now I am claiming that V1 will be such that when I project x onto V1 I

will have the maximum variance right, so in this case it will be some direction like this okay and

projecting x onto this essentially means that right, so you can see that the data is pretty spread

out it goes from here to here right on the other hand if I had taken a direction let us say that looks

like that right.

So if I look at projection of the data right, so you can look at the spread it is a lot lesser in that

direction than in the original direction I did the projection I know it looks pretty confusing to

look at but the people can get my point right it is in the original direction that way the data was a

lot more spread out as opposed to this direction where the data is lot more compact when I

project it on to that direction.

So that is essentially  what I am saying so z1 right is essentially the projected data onto that

direction onto x like z1 actually has a highest variance among all the directions in which I can

project  the  data  right  and  consequently  you  can  also  show  things  like  if  I  am  looking  to

reconstruct the data original data and I say that you can only give me one coordinate right so you

have to summarize the data in a single coordinate  and now I am going to measure the data

measure the error in reconstruction right. If you looked at it so the error in reconstruction would

have been these bars that I did the projection over right.
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That would be the error in reconstruction, so I have the original data so that is the data so now I

will give you this coordinates now I have to reconstruct the data right so essentially this will be

the errors so the principal the first principal component direction the first principal component

direction is the one that has the smallest reconstruction error first a principal comment direction

will be the one that has the smallest reconstruction so we can show a lot of nice properties about

this.

So I will actually come back and do this later when we talk about the general feature selection

okay but here you can see the first thing you can see what each one write V1 to VP will be

orthogonal right, so I have gotten my orthogonal directions right and the thing to notice is a lot of

the variation in the data is explained by V1 has the maximum variance likewise you take out V1

right you take out V1 so now what you have your data lies in some kind of a t - 1 dimensional

space right and the direction in that the space which has the highest variance is P2 it turns out that

so V1 has the highest variance over the data.

So in this space orthogonal to V1 V2 has the highest variance right in the space orthogonal to V1

and V2, V3 will have the highest variance and so on so forth so essentially now what you can do

is hey I am going to take all this directions one at a time right and I will do my regression right

because each is orthogonal I can independently do the regression I can add the outputs and I can

keep adding the dimensions until my residual becomes small enough that make sense so I will



just  keep adding this  orthogonal dimensions until  my residual becomes small  enough at that

point I stop.
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So this is essentially the idea behind so remember we are working with the center data right, so

you automatically add in your intercept which is y bar the coefficient is y bar right and then your

if you if you choose to take the first M principal components your thing will be θm ZM where

ZM is given by this right and θ m is essentially regressing Y on ZM right so that is a univariate

regression  expression  we  know  that  well  now  so  this  gives  you  the  principal  component

regression fit so one of the drawbacks of doing principal component regression is that I am only

looking at the data the input right I am not looking at the output.

So it could very well be that once I consider what the output is right I might want to change the

directions a little bit right, so I can give you an example is easier for me to draw if I think of

classification.
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Let us say this is the data and what would be the principal component direction you want to

choose something like this right so that would be the ideal direction that you would want to

choose okay so now what will  happen the data  will  get we get  projected like this  right  but

suppose I tell you that.
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Suppose I tell you that that is fine that these three were in a different class and if you want to

think of it in terms of regression let us assume that these three have an output of -1 and these 4

have an output of +1 okay now if you think of this direction so the +1 and -1 are hopelessly

mixed up right the +1 and -1 are hopelessly mixed up and I cannot I cannot draw is give a

smooth prediction of which will be +1  which will be -1 on the other hand if you project onto a

direction like this right the variance is small right I agree the variance is much smaller but if you

think about it.

So all the -1 go to one side right all the +1 go to one side, so now if I want to do a prediction on

this so it will be like okay this is this side is -1 and that side is +1 I can essentially do a fit like

this which will give me a lot lesser error than the other case right so in cases where you are

having an output that is specified for you already it might be beneficial to look at the output also

when trying to delay directions as opposed to just looking at the input data so in classification

you can see right in classification this will be say class 1 this will be class 2 and having this

direction  allows  you  to  have  a  separating  surface  somewhere  here  right  we  talked  about

classification in the first class right.

So you just having a separating surface here will be great but in this case if I am projecting on

this direction coming up with a linear separating surface is going to be hard everything gets

completely mixed up.
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