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Right, so it is called forward stage weight selection where at each stage you do the following

okay. Let me rephrase it, on the first stage you do the following, so you pick the variable that is

most correlated with the output like you pick the variable that is most correlated with the output

and then you regress the output on that variable find the residual. Now what you do is pick the

variable that is most correlated with the residual okay, regress the residual on that variable okay.

Now add it to your predictor okay, so what is your predictor, you already had one variable right

then you had a coefficient for that variable which you got by their first regression. Now you have

a second variable and they have a coefficient for that variable which you got my regressing the



residual on this variable they essentially what you are trying to do is okay the first variable make

some prediction okay.

The second variable is going to try to predict what the error is right, so essentially now I will be

adding the error to the prediction of the first variable. Did that make sense? Right. So the first

variable  let  us say that is the true output that I want right,  so the first variable  will  make a

prediction saying that okay this is the actual fitted value right, and this is the residual. What I am

trying to do with the second variable is actually to predict this gap right.

So when I  add the  second variable  with  this  coefficient  to  the  first  variable,  so  what  I  am

essentially doing is okay the first variable will give this as the output, the second variable make

some other prediction let us say that much so I will add the two, so the new output will be that

right. Now I still have a residual left right, so then I will pick a third variable which is maximally

correlated with this residual.

And now I add the output of all the three okay and then I get my new predictor okay, does it

make sense? So at every stage I find the residual whatever has not been predicted correctly by

the previous case stages right, whatever is the residual error after the previous case stages and try

to predict that using the new variable and essentially I find the direction which is most correlated

with this prediction and then I try to give you that okay, make sense?  Right this is called forward

stage wise selection right.

So what is the advantage of stage by selection? Come on I asked a question I believe can you

think of any advantage of this sorry, neither was I randomly picking a variable in the previous

methods right, I was picking greedily that was not random. No even in the previous case I only

pick variables that gave me better fits right. In fact I will tell you that it will probably converge

faster in forward step wise selection rather than forward stage wise okay.

But there is another significant advantage here if you just thought about the process of fitting the

coefficients at every stage I do a univariate regression right, at every stage I am just regressing

the  residual  on one variable  right  every  stage  it  is  a  univariate  regression right.  In  forward

stepwise selection so every stage I will add a new variable, but then I have to do a multivariate

regression, I have to do the regression all over again, I am not able to reuse the coefficients from

the previous step right.



So when I add a new variable I basically now I have k+1 variables and into a new regression

with k+1 variables, but in this case what is happening at every step stage I just have to do a linear

regression I keep all the work that I have done so far intact. So in fact since we are doing this

only one at a time right I am, so I am not even though I might have K variables in the system

right. 

But the coefficients I have for the K variables might not be the same K coefficients I would have

gotten, if it started with this K variables and did a linear regression on it okay. So the coefficients

could be different right, if I take those K variables and do linear regression I will get a better fit

rather than doing this stage wise fit. But we prefer to the stage wise, because it saves us a lot of

computation okay, makes sense.

Eventually everything will catch up and we will get the same kind of prediction at the end of it,

but you might end up adding a little bit more variables in this work, in this approach, but that is

fine  right.  Another  question  okay,  so  the  next  class  of  methods  we  will  look  at  are  called

shrinkage methods,  but  the idea is  to shrink some of the parameters  to zero,  it  shrink them

towards zero right.

So in the subset selection here essentially if you think about what we are doing all this variables

or all the variables that we did not select you have setting the coefficients to zero right. But

instead of doing an arbitrary greedy search or stage by selection and so on so forth, in shrinkage

methods what we do is we come up with a proper optimization formulation right which allows us

to shrink the unnecessary coordinates okay.

Ideally you would like to shrink them all the way to zero, but there are problems in doing that,

but we will try to keep them as small as possible you can do some post-processing and then get

rid of really small coordinates and things like that. But we really like to shrink these coordinates

right. So this is fine from the prediction accuracy point of view right from the interpretability

point of view it still leaves a little bit to be desired, because you might have a lot of coefficients

with I mean a lot of variables with very small coefficients back in the system.

So it is still a little bit of a thing, but mathematically this is a much sounder method than any of

these things we have been talking about. And of course this is the soundest, but also impossible

right. So the first thing we look at it is called ridge regression the whole idea behind mean all of



this shrinkage methods is that you are going to have your usual objective function which is what

the sum squared error that you are going to try and minimize the sum squared error.

In addition you are going to impose a penalty on the size of the coefficients right. So you want to

reduce the error, but not at the cost of making some coefficient very large right. You do not try

and  shrink  the  coefficients  as  much  as  possible,  so  what  will  happen  is  your  optimization

procedure will try to find solutions which have as smaller coefficient as possible and give you

the similar kind of minimization in this squared error objective okay.
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It is okay I will waste that much of the board I will write things here. So what is your normal

objective function right. So that is a normal objective function for finding their β, and so your β

had essentially this. So now what I am saying is, let us not do this, but let us do this with the

constraint right. So what is a constraint okay fairly straight forward I have added a squared norm

constraint right.

So I am making, I am just saying that okay, so this is essentially we think about it is L2 norm for

my this thing, so I am taking the root I am just leaving it as a square does not matter right. So it

is like an L2 norm constraint for my data. 

(Refer Slide Time: 11:16) 



So I can make this into an unconstrained problem right, because λ has to be greater than zero

why do I want the βs to be small okay good question actually. So what we wanted to do was to

make sure that you are reducing the variance of your model right, so that is essentially what we

are trying to do now, all the subsets selection was we set the coefficient to zero, we said you have

lot fewer parameters to estimate right.

So now what I am doing if I am by imposing the size constraint on the parameters right, the size

constraints  on the variables I am actually reducing the range over which these variables can

actually  move  around  okay.  So  if  you  think  about  it  if  I  have  moderately  correlated  input

variables  are correlated  or anti-correlated input variables,  so let  us say I  have two variables

which x1 and x2 which are correlated okay.

Now I can have a large β1 and a large negative β2 okay that essentially will cancel out each other

in terms of the predictions I am making, because x1 and x2 are themselves correlated right. So I

can actually make my β1 very large and my β2 is largely negative right, so that it will just cancel

out the actual effects of the two variables right. So it essentially becomes a difference of β1, β2

that actually matters right, not necessarily the difference in magnitude of β1 β2 that matters not

actually not the actual values.

So in which case so I can basically have a large class of models which will give me the same

exact output right. So this makes my problem much harder to control and then that increases the

difficulty of the estimation problem right. But now we are saying that no, no I cannot allow these



things to become very large, then I am restricting the class of models I am going to be looking at

okay.

So that is the reason why the stating size of β helps yeah I did not explain this completely last

name so thanks for asking the question right. So we just have to make sure that our λ are positive

we know that little so Lagrange multiplies have to be positive and so on so forth. So now I can

go ahead and minimize this right. So a couple of things which I want to point out now, so one

thing is if you notice the penalty here, so what do you notice about this.

I am not including β0 right see the sum runs from 1 to P it is not running from 0 to P also note

that I actually explicitly wrote out β0 here I did not squish it into the P+1 thing, because I am

going to be treating β0 specially here mainly, because if I penalize β0 then what will happen is if

I move my data up right, so let us say this is my X and Y axis and I have this is the data that I had

right.

So now I have to fit that line through this right, it is a univariate regression problem Y is my

response and X is my input I have to fit a line right. But now the same data points okay, if I shift

them up right, so shifting up the data points is hard, so I will just shift the origin okay. If I shift

the origin what will happen if I penalize β0 no, no. So if you penalize β0 it will try to keep this

intercept small right, penalizing β0 will try to keep the intercept small.

So earlier when I had that right if you look at the fit it will pass very close to the origin the

intercept will be close to 0 right. Now when I shifted this it is going to try and make the intercept

small in stuff there is line just shifting the slope of the line will change right. It is the same data it

has just shifted up a little bit right, so the slope of the line will change, so it will try to go through

somewhere here.

So essentially earlier when the line would I mean like this right, now the line will become like

that because I am penalizing β0 right. So we do not want that to happen so just simple shifts in

the data should not change the fit right. So we do not penalize β0 right. Does it make sense? And

anyway we know what β0 should be do, you know what β0 should be right, it should be the

average of the outputs anyway.

So one way which we can actually get rid of β0 from this optimization problem is to say that we

will center the inputs right. So we will subtract the average from the Y’s and likewise we will



subtract the averages from all the X’s okay. So we will center the input, so we will make all the

X variables  centered  on zero right.  So we will  subtract  the mean from all  the X’s,  we will

subtract the mean from the Y's okay.

So this will give me a centered input okay, and then I will just do regression on this centered

input well there will be no β0 okay. So from now on when I write X it is a nxp matrix where the

input has been centered okay. So that way I do not have to worry about the, so essentially what I

have done here is I have taken my data from there okay, and shifted it so that the fit whatever is

the fit I am going to get will pass through the origin right.

So that  is  essentially  what  I  have  done I  have  taken  the  original  data  translated  it,  so  that

whatever fit will pass through the origin okay. And I will go back and add the β0 later to get any

original  fit  does that make sense okay good. So matrix form I write it  like this, so you can

minimize this take the derivative and set it to zero solve for it you will get this. So here, so both

my x and y are centered.

So I subtracted the mean from Y, I subtracted the mean from the columns of x so they are all

centered here okay. So just remember that and so once I get this centered values I can solve for

it, this gives me the β hat ridge for 1 to P right in the β0 I estimate as Ybar and that gives me the

full solution okay, is it fine. So one thing which I forgot to point out earlier you remember I had

this variable T here, there was upper bound on the, so I said subject to the constraint that it

should not be larger than T, the T has vanished yet, but you can show that this λ and the T are

related right.

So it does not matter, so for every choice of T you have a choice of λ okay, but typically what

happens is you choose your appropriate lambda and then you work with it, you do not worry

about the T formulation okay. Any questions on this, so this tells you why this is called ridge

regression, because what they have done here is you essentially added a ridge to your data matrix

you take the XTX okay.

And then you add a diagonal λ which is like adding a ridge of size λ to the diagonal elements of

XTX okay. So that is why it is called ridge regression. So why are you doing this and can you see

one advantage of doing this λ I think here, sorry, this whole thing becomes invertible right. So as



well as I add the λi I am sure that this is non-singular. And even if XTX was originally singular

and adding λi makes it nonsingular and it is invertible.

In fact this was the original motivation for ridge regression right, back in the I forget, in the 50s

when people came up with ridge regression the original motivation was XTX could be badly

conditioned okay, even if it is non singular we talked about this in the last class right. It could be

that some variables are so highly correlated. So even if the matrix is invertible numerically you

will get into problems right I told you that the residual might be so small right.

So when you try to fit the coefficients you will get into problems. So numerically the inversion

might be a problem right, even if the matrix is non-singular, but by adding this λi term to it you

make  sure  that  it  is  invertible  and by controlling  the  size  of  the  λ  you can  make sure  that

numerically  also the problem is  well  behaved right.  So that  is the idea behind with original

motivation for ridge regression was essentially to make the problem first of all solvable right.

But  then it  then people  went  back and understood rigid regression in  terms of  shrinkage or

variance  direction.  And  since  it  makes  it  convenient  for  us  to  talk  about  a  whole  class  of

problems, shrinkage problems right we motivate the motivated rigid regression from the view

point of shrinkage as opposed to this inversion problem right. Any questions, so I am going to

encourage you to read the discussion that follows rigid regression in the book right.

It requires you to work out some things along with the book you just cannot just sit there and

passively read it okay, but then it draws a lot more connections from ridge regression to a variety

of other statistical properties about the data which will be useful to know and I am going to make

you read, I mean so go read it I mean ask you questions on it later. So go and read the discussion

okay. So the next thing.
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