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So far I have really not worried about the fact that we have multiple dimensions in the input

space, that we just had this way of handling it but then if you actually look at how statisticians

typically present linear regression they will start off with a univariate regression they start off

with  one input  variable  and one output  variable  right,  so one independent  variable  and one

dependent variable, so the independent variable is the input variable a.

(Refer Slide Time: 00:54)

So whatever we have looked at so far is usually called multiple regression, we will still typically

start off with univariate regression people usually start off with univariate regression because it is

easier  to  analyze  you can  derive  a  lot  of  intuition  into  what  exactly  is  happening  with  the

regression right, in fact if you think about it this picture I drew for you is with you it is univariate



regression with an intercept right, so that there is a column of once and then there is one other

variable that is all right.

This is essentially univariate in the regression with the bias term right, so this kind of mean you

can very easily develop all kinds of intuitions and also analysis very clean and more importantly

you can understand multivariate regression okay by a series of univariate regressions, so let us

look at it very quickly and then we will see what happens all right. So this is the basic model that

we have but here we are going to assume that X is a number right X is a single number so it is a

single vector now right, so my data will be of the form some X Y that is not a that is not a vector

is just a simple X.

So without intersection, so why is it called the intercept, so the constant value you add is what

the value of where it will cut the y-axis okay that is why it is intercept, so I have no intercept that

means there is no β naught here okay so now this 1β is given by right essentially our original this

case for a univariate case I am going to denote by r i the residual error that I am making, so I

made the prediction right. So xi β hat is the prediction I am making, so yi is the actual output.
I saw in the training data, so yi - xi β is the residual error okay that is before I am going to define

okay people.

I hope are familiar with the inner product notation of this form essentially okay, now can you tell

me what β height should be the inner product notation somebody said something I had a small

squeak somewhere, this is fairly simple, so one thing I just point out in passing here right I am

not going to cover it you guys are happy to I mean I we are free to read up in has T tips Ronnie

Friedman later chapter.

Which we will not get to but the fact that I am using inner products here okay should tell you that

I can apply the ideas of linear regression on any inner product space okay not just in real number

space okay, so yeah I will leave it at that gives you a good generalization. So what we are doing

here I will call this as, so regressing Y on X okay and we get the coefficient β hat so this is

remember what we are talking about so far is a univariate regression at no intercept nothing.

Suppose  that  your  columns  are  all  orthogonal  not  only  are  they  independent  they  are  all

orthogonal okay you can little bit of thought you can convince yourself that each β, so β 1 β 2 β 3

and so on so forth or just given by regressing Y on X 1, X 2, X 3 and so on so forth so β 1 this

regression of way on X 1 β 2 is regression of Y on X 2 right why is that the case, so now my X 1



and X 2 are orthogonal they are actually  the orthogonal basis an orthogonal  basis  for the P

dimensional space the p + 1dimensional space I am talking about and each coefficient that I am

going to get essentially would mean will be the intercept on each of the individual dimensions.

The projection on each of the individual dimensions because they are orthogonal in the lowered

lower space right, so that is easy to convince yourself, what is interesting is what happens if the

XS are  not  orthogonal,  they  are  independent  let  me  say  they  are  still  spanning  a  P plus  1

dimensional space right but they are not orthogonal, so what do the coefficients represent in that

case so that is essentially what we are going to look at okay. So we will start off by taking one

step at a time look at the intercept plus one variable.

So far I said that is one variable without intercept okay now I am adding the intercept, so what

will be what does it essentially mean for us, my x becomes 1comma X right, so here I had just a

single value x right I could just write it like this, now my vector x becomes so I am going to

consider is a column of once and my original vector x okay this is my new vector that I am going

to consider. So what I am going to do is the first step I am going to do is tell you about that, so

this upper case exists the actual column vector excess of consists of x okay this is the actual input

I am going to look at so let me define  as the average of the all the inputs I have seen all thexx

inputs I have received is my training data.

So a regress x on I write and form the form the residual, so what will the residual be but in this

case what would it be I am saying because I am regressing on one all once right, so if all one

system only input variable I have write what should be the best possible prediction I can give xx

right so  is the only output I can give that will be the one that minimizes the prediction errorxx

right because I am looking at squared error the output should be . So my β hat will be  in thisxx xx

case right.

So the residual which I will denote by is by Z will be okay so this   is just to indicate that it is a1x

vector of once okay, so this x is the x is a vector so this  is a scalar value which is the average ofxx

all the inputs and 1 is the vector of one so that this gives you the residual okay does it make x

sense, this is the vector of residuals, so I usually put the bar on the x and the z then the middle to

differentiate it from two right but sometimes it looks like lower case then, so is it fine let us

adopt the convention that even if, I put the bar there it is still uppercase dead okay because either

way I will have to be very careful about distinguishing 2 and Z.



And things like that so this is an upper case and if I really want you to look at lower case it and

write  that  okay,  so the second thing I  will  do is  now regress  like,  so this  is  one univariate

regression this is another univariate regression, so essentially this tells me okay. I have taken the

average value out of the input variables because the average value can be used to predict the

average output if, I have taken out the average value so whatever is left okay is the individual

variations on the data point okay and use that to predict my output value away.

So this essentially means that so given that there are two dimensions 1 and x okay so the β 1 had

tells me what is the contribution of  x okay after I have used 1to explain the output okay, so

given I have taken care of one already what is x, so if you think about what I have done here this

is essentially making it orthogonal to the 1 vector right, the Z vector is essentially the x vector

right  the  component  of  x  that  is  orthogonal  to  the  1  vector  going back to  how we did  the

univariate  regression?  That  is  what  we  have  done  here  so  this  is  remained  new people  of

anything  already  looked  at  gram  smith,  the  people  have  come  across  gram-smith

orthogonalization right, this is essentially something very similar to that.

So I start off with 1 and the x x s the 2 vectors that span some space now I am orthogonalize I am

essentially giving you an orthogonal basis now one is one vector and z this the other vector but

together they span the same space that was spanned originally by 1 index it except that they are

orthogonal and people agreed with me earlier when I said that if the columns of x are orthogonal

then they can independently do regression on each of those columns that is essentially what we

are doing yet so I have done a regression on list to get me β 1.

So going back to our picture here, so essentially I had some x1 I had some x2 right, so what I did

was I first rigorous x2 on this and so essentially I am getting so that is my z right I am getting that

orthogonal component to that, so now I have x1 I have z and they are spanning the same well

yeah they are spanning the that is in loop correct ratio metrically there you go that is 90 0, so they

are essentially spanning the same space that z is a projection of x2 imagine the plane is going into

the board right so it does not look right to you but the plane is going into the board.

So z is actually perpendicular to x1 and it is formed by projecting but by regressing x2 on x1 okay

that is direction z and my virginal y which was going out of the plane, now I essentially project it

on z to get the coefficient what right it does not matter see this is still going to project here okay



so earlier when I wanted the coefficient for x1 and x2 right I would have looked at this these

points right here now I will basically look at these points that is essentially what I have done

there is no change in the actual space.

So the same y hat is what I will get okay but the coefficients I will be using for representing the

way that will be different, we can generalize this to P dimensions, so what will you get so j runs

from 1 to P so I will regress xj on all the previous z directions that I have determined right, so

how would I written jet not will jet not I start off with z1 would have been obtained by regressing

x1
0 is it not and then finding the residual, so that gives me so that is what we do here right, so I

take  right I basically I regressed x on 1 bar and then take the residual and make that as z soxx

likewise I will regress x1 on z 0 take the residual and use that as z1 ok then I will regress x2 on is it

not and z1 ok then take the residual, so that is the γ coefficient which will so in this case it was xx

okay.

So if you think about it right that will be , so z δ inner product with z δ when z is all once is nxx

right and the del inner product with x1 when z it is all once is just x1, so this essentially will be

the summation of x1 this will be just  the first case weight that is this is a comma it make sensexx

or was it too quick yes no, so I am saying this  was delayed by just using the same formula rightxx

this was 1/2 this happens when I regress on the first variable right, so start off with z 0 is 1 I am

regressing x1 on z 0 when I regress x1 on z 0 what do I get so z 0 inner product z 0 is n well just

once right and they sum up all the ones.

So that is where dimension is y n that will be N and z 0 inner product x1 will be summation x1

right, so summation x1 / n is essentially the average, so that is essentially what we had here okay

so that is the same formula now I am generalizing to other dimensions so I am still continuing

the loop here okay, so that loop that runs for J = 1 to P.
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So for  every  j  and that  is  how I  derive  my z j okay,  so I  take  the  current  coordinate  under

consideration xj subtract all the previous dimensions I have basically looked at. So what I am left

with what am I left with the orthogonal component of xj okay orthogonal with respect to the

dimensions I have already looked at, so in some what I am considering, so once I have done this

for in some more I am considering it in some order right when they come to the pH dimension,

so what do I get, so what is β P, had P now it is the actual coordinate sorry the actual coefficient

that I will find for the variable if I had done the β the regression as we talked about earlier right,

if I had done that if you estimated my β like this okay.

This is essentially what I will end up with okay but because of the process we have generated it

we can interpret it in a slightly different way which is essentially β hat P tells you how much the

pH variable contributes to the output given, that we have adjusted for all the other input variables

given that we have adjusted for all the other input variables, how much does the pH variable

contribute to the output, now we can go back and think about non independent vectors, if any of

the variables is not independent right, so what happen in this case the receiver will be 0 and it

essentially will be trying to find, how much would 0 contribute to the output okay that is not

going to be a lot okay.

But it becomes even more interesting if my vectors are merely dependent but not exactly, so

what will happen is if I subtract out everything else from that vector right, so think of it like this

right this is x1 that is x2 okay this is the 2nd  plane it is not like this is the plane right, so x1 and x2



are very close to each other there,  so if I subtract out x1 from x2 I  am going to get a small

component that is orthogonal to this right, I am going to get something like this all right. Now if

I take the inner product of that, so that will be a small number here, so this can become very

large right.

So if my vectors are nearly dependent but not exactly so that the residual is NaN not zero exactly

but close to zero then the whole thing can become very unstable the estimate whole estimation

process can become unstable, so that is essentially what will happen if even if you eliminate

perfectly dependent columns right there could still be possibility of getting numerical instability

so to avoid all of these things people have come up with various techniques, that of course one of

them is to essentially get rid of all the correlated or the nearly correlated columns right, but there

are there are other ways of actually trying to get this to be stable okay.

So just an assay, so let z be the matrix that we create by taking z1 to zp columns okay, so I have

done this set 1 to Z P in this elimination processor it is um in some order right, so I will take this

z1 to zp columns okay and γ is the matrix where I store all my γ hat kj there is an upper triangular

matrix right, so for every combination kj, I will have 1 γ hat value I will just put it in the upper

triangular part and the lower triangular said I will just keep it as zero. So an upper triangular

matrix there and you can think about it you can write the xs z x comma x can be written as z

times γ right.

So essentially the I am just stacking all of these things you have done together and we are writing

it as is that times γ and so D is a diagonal matrix where the diagonal entries are the norm of the

inner product of zj with itself right, so the j entry or the j j8 entry in the D matrix would be the

inner product of zj with itself that is the norm of zj, so I can write it like this, so this is called the

QR decomposition of  x right, so the thing about Q is it is orthogonal right. Q is orthogonal and R

is upper triangular okay.

So this kind of a representation for the data matrix, so this kind of a QR representation of the

data matrix essentially gives you some kind of ortho normal basis but Q is not just orthogonal is

orthonormal way because I am dividing by the norm here okay, so it is so the product will be

ones or zeros because they are orthogonal to begin with anyway okay I made them orthonormal

so Q gives me an orthonormal basis and R is said upper triangular matrix that lets me reconstruct



the inputs x ok and this kind of composition is very convenient and it is used widely in other

kinds of representation or transformation of the data and so on so forth.
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