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Linear Regression

So there is a basic assumption that we had earlier.
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So  we are  going to  assume that  the  expected  value  of  y  given x is  linear  right.  So  that  is

essentially what, this is telling us right. So f(x) is so here is the expected value of y. there is some

kind of a noise corrupted the training data that is given to you; the expected value of y given x is

linear right. And so we had this discussion earlier, so the nice thing is linear regression is not as

weak as you think right. 
So x can be a variety of different things right, x need not just be real valued inputs. They are

assume to be drawn from Rp right x are assumed to be drawn from some T dimensional real

valued space. But they did not just be real valid inputs they could be any kind of encoding right.



We talked about basis  expansions like we talked about basis expansion, which essentially  is

blowing up your input space by some kind of transformation of the input variables right. 

So if my original data is x1 to xp. I can think of right that this as my input so that is basically

basis expansion right I could also think of interaction terms right.
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I have to think of more complex transformation, x could be qualitative inputs as well. What I

mean by that hot cold right, tall short medium height how I would handle that. Weights has levels

in the input right or it could be just red blue green mean it does not really correspond to any

level. I mean young and old we can think of saying okay. Young  is 1 and old is 2 and middle age

is 1.5 or whatever right but what about red blue and green things like that. 

Encode each color right, encoding how do you do the encoding. Yeah! you are right you have to

do some kind of encoding how do you do the encoding.  As soon as I said identify yourself and

talk nobody talks. I could do some kind of binary encoding right, so I can think of saying that

okay I have four colors right. So I will have two bits to encode the four colors right two bit 4 gets

translated into two bits. 

It turns out that that is usually too much of a compression in the encoding right and if you have

four possible values this thing can take it  is better  to sometimes use four bits right.  So it  is

sometimes called one of n encoding right so only one of those four bits will be one for any input



right. So red means the first bit will be one blue means the second bit will be one and so on and

so for right or sometimes it is called one hot encoding. 

So this one of the inputs will be hot the others will all be cold right. So sometimes called one of

N or one hot encoding, so you could take care of qualitative inputs like that categorical inputs

also you could do that. And whatever you do right mean however you are expanded your basis or

however you are encoded the thing. Finally the model you fit will be linear, it except that if your

original dimension was 1 in this case right I had a one color input. 

It could take four values now my input dimensions become 4. Similarly I had P input earlier now

input dimensions has become this case depends. Depends on whether I am feeding in x1 to xp

also right, if I only feed in the second order terms it is still P but the the class of functions I can

model is restricted. And if I feed in x1 to xp as well as the squares then it is 2p and the class of

functions I can model is become larger. 

So that is basically the underlying set up right the model is still linear. person why is it two-bit

including each to the degree 4 bit inputting is better than 2-bit encodings it okay. The point is so

when I have two bits encoding so there will be the same input variable that gets activated for two

different colors right suppose I am using red this zero one okay and blue is 11 okay. so that 11

will get activated for both red then blue. 

And likewise when there is 1 0and 11 right. So so the same bit gets activated for multiple inputs

okay. And that gives you some amount of interference in the training right. We can still train it

with two bits you probably need a lot more training data to take care of the interference from one

to the other right. When you have these kinds of 4 bits essentially you have independent weights

modeling the influence of each of the levels. 

So red that is one weight by weight I mean 1β here okay for red there will be 1β that will be

modeling the effect of red. For blue there will be another beta modeling the effect of blue right.

That way there will not be much interference between the variables right. So technically you can

model it with two bits and get away with it is that you will probably need more data for the

estimation. That is why I say in practice four bits is better. 



Let us go and continue looking at this, so I am my training data so fonts are find so the training

data is I am going to assume this of the form and that each xi. I am going to I am going to

assume that I have n data points each of the form x1 y 1 to x n y n right.

(Refer Slide Time: 08:09)

 
And the way we are going to fix this is using least squares. So we are going to translate this into

matrix notation to show you some things right and in matrix notation when I write x at least for

today it is N x (P +1) matrix, where the first column is all ones. So we have seen this already so

it is N x P matrix where the first column is all ones okay.  So I can write it like this in matrix

form. Let me think about it that square thingy there becomes this. 

Because f (x) now becomes just xβ. Would that be this all done the linear algebra tutorial you

should  be  able  to  tell  me  what  there  is,  so  I  am  going  to  let  you  if  you  cannot  see  that

immediately. I am going to let you work it out yourself okay and yourself okay. We should get

really familiar with doing this kind of derivatives of matrices. Because we will be using this

quite often whenever we write this kinds of error functions in terms of matrices ready to use this.

Intuitively see it is right but you just need to work out the math here. And at least this seems easy

enough I am taking a derivative of this with respect to β and the only term where β P is XT  X

okay right. So if X has full column rank okay XT X will be positive definite. So it low it will

certainly be invertible okay. So it will be and no it is not just invertible it will be positive definite

and therefore we can assume that it is here maxima or minima. 



Now anyways so if I equate this to 0 I will  get an extremism point right I will get either a

maximum or a minimum okay. So what would it be anyway think about it I am going to anyway

minimize the error that that should give you a clue right okay. So I am essentially I have to set

this to 0 if I want to find the minima of the error and this is going to give me right. 
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This is all standards if you already know what the solution of linear regression is we saw that in

the the last class and you should have revised things by now. 
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They tell you that if you read in the previous whatever we have covered till the previous class

and come the next class will be easier right. So we already seen the solution right and so if I put

this together I basically get Y^= X times XT X inverse XT  Y. So this expression is sometimes

called the Hat matrix you know why it takes Y and puts a hat on it right. So it is called the Hat

matrix so hat essentially means what this is shorter and  for estimates okay. 

Hat so hats off shortens for estimates denotes that it is not the true quantity so why is the the true

random variable  and y  hat  is  an  estimate  of  the  value  of  y  okay.  So this  is  essentially  the

estimator matrix right. So in that sense you can think of it as a hat matrix, so another way of

thinking about it is the following. So what do we what can we say about Y right the vector Y not

the output random variable Y. 

I am talking about the vector Y right, I should say that. So X is n x p +1what about Y N x 1 right.

So Y is actually a point in right it is N x 1, so you can take the P + 1 columns of X right so X is

going to have P + 1 columns right. You can take the P +1 columns of X as set of basis vectors



right. So what is the dimensionality of each column n okay. So each column is a RN is a vector

in RN right and I have P + 1 such vector in RN okay. 

Now I can think of these vectors as a set of basis function basis vectors right. So it ideally I

would like them to span a P +1 dimensional subspace of RN. It is where all the linear algebra

tutorial supposed to help. So so you have a P + 1 subspace of RN, your X beta is what we will be

a point in that P + 1 subspace, dimensional subspace right. Because X or my basis vectors right

and I am combining the basis vectors by some set of scalars β right β 1 β 2 like β1 β2 right. 

That although scalars just am getting just getting a linear combination of my basis vector so it is

going to give me some point in the p + 1 dimensional space right. In fact if I am doing linear

regression all I can do is express a point in that P +1 dimensional space. If I take the columns of

my x matrix any output that I can learn will be a point in that p +1 dimensional space. Makes

sense right so what is the best possible point in that p +1 dimensional space that I can predict. 

So let us say I have two vectors x 1 and x 2 these are not the data points okay. These are the the

column vectors okay so since there are two dimension 2 vectors here so X 1 and X 2 right. And

this is the space and let us supposes I have a vector Y which is in the N dimensional space okay. I

have a vector Y in the n-dimensional space what is the best prediction I can make.
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 So Y is in r3 I mean if you mean if you can buy into my drawing skills okay so X 1 and X 2span

that two dimensional subspace of r3 right. And Y is a point in r3 right so that is what Y is what is

the best prediction that I can make that fits into the X 1 X 2 space. The projection of Y right that

is what I had should be and will I be able to make that prediction. am I making the prediction?

yes, because if you look at the error. 

So  Y minus  y hat  is  essentially  orthogonal  to  the  space  spanned by X so that  is  what  our

minimization condition is telling us right, XT Y X β is 0 right. So essentially it is telling I said

okay ,this vector this is y minus y hat this vector is orthogonal to the plane spanned by X that is

essentially what the minimizing condition is telling is okay. So this is the best possible estimate

that you can make for why given that you are restricted to the plane spanned by the columns of X

okay. 

That make sense so this is a geometric interpretation of what linear regression is doing. It is also

lets us think about some other things right so what happens if X is not full rank that would mean

that some of the columns are dependent on each other right or linearly dependent on each other.

That essentially means that it is not really spanning a P +1 dimensional space its spanning a

smaller subspace right. 

It is planning a smaller dimensional subspace therefore your approximation is going to be worse.

That is one part of it, then anything else the formula would not be valid. So we have to think of

different ways of doing it right,  so that is the next thing but still regardless of that the best fit that

you can get will still be the projection of your Y onto the space spanned by the XS. You have to

have to come up with different ways offending it. 

But it will still be the projection right, so that is the thing. So one of the easiest ways of doing it

is what?  Now we know exactly now we know that, it is just in the space that is spanned by these

vectors that is important right and we are supposed to find the projection onto the space. And if

there are redundant vectors that will not help us define the space. We can throw them out but

even though I have all this P+1 dimension right whatever is redundant that is not helping me

define the subspace I can throw them on.

So there are some very simple checks that you can do right in fact if you use some standard tools

like  R and you are  trying  to  do  linear  regression  unless  you explicitly  tell  it  not  to  it  will



automatically  do  the  check  for  you  it  will  automatically  do  the  check  and  throw  out  the

independent curves it will pick some subset of independent bases and then use that to figure out

what the projection should be okay. 

Great so what about the case with the number of dimensions is much larger than the number of

data points? Do you think that will happen yes, no possible how many of you here work with

images or have done any work with image data. So more often than not that is the case right so

because image data is very high dimensional right and unless you are able to generate huge

volumes of such data and more often than not P will be greater than n.

So you have to think of some kind of regularizing the fit so that you get actually a valid answer

right. If P is larger essentially what it means that you have a much larger space and Y actually

exists  in a  smaller  space than what  is  given to  you.  So so we have to  figure out  a way of

regularizing the problems so that adding additional constraints on what kind of projections you

are looking for because otherwise it does not make sense to talk about the projection of Y on this

P plus 1 dimensional space okay.
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