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Lecture – 05 

Currying 

Let us turn now with the mysterious notation we have been using for functions with 

multiple inputs. 
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So, what we have been seeing is that when we have a function 6, 2 and puts like plus 

instead of using the familiar notation, where we use a bracket and we put the arguments 

inside the brackets separated by commas, instead we just write the arguments one after 

the other separated by spaces. Now, when we write a function like plus in the usual way, 

we indicate that it takes two arguments and this is called arity. So, the arity of function is 

how many arguments it takes. 

So, in this case we say that plus is a binary function, so you have binary functions, unary 

functions take only one argument and so on. So, this becomes part of the definition of the 

function and when we use the function we have to ensure that we separate the right 

number of arguments. So, this is the conventional point of view, now our radical 

departure from this is to assume let all functions take only one input and this is the 

principle behind the notation that we have been using and we will see in a minute how it 



works and just as a piece of terminology, this style of writing functions where every 

function is the function of only one argument is called currying. 

So, it has nothing to do with cooking, but rather it is named after the logician Haskell 

curry, who made it popular. So, Haskell curry is not in fact, the person who invented it, 

the person who invented it was the other logician called Schonfinkel, but Haskell curry 

was a logician who made this style of notation for functions popular. And another piece 

of interest for us is that the language Haskell you might have wonder where the name 

Haskell came from, where Haskell is actually named after the logician Haskell curry. 
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So, let us look at these two view points of functions. So, on the left we have a familiar 

plus which takes two arguments n and m, m produces an output, the answer n plus m and 

the right is a picture of how we are supposed to think about the curried version. So, what 

we are saying now is that plus as we have defined it takes only one argument. So, the one 

argument it takes is the first argument, so effectively we start by consuming this n. So, 

plus consumes n, so that is this box and it produce the new function in which n is now 

been observed. 

So, now, we have function which will add end to whatever it gets, so that is the principle. 

So, you instead of consuming multiple arguments in one short, you consumed one 

argument plane and then you transform yourself into a new function in which part of the 

functionality is internal x. So, plus has consumed the first argument and become a fixed 

function called plus m, which will add n to whatever, so if the first argument was plus 2, 



then now this new function we called plus 2 glade 2 to whatever it is. 

And now this new function which is now going to consumed m, this is now going to take 

this m, add n do it which is already been built in given n plus m. So, the idea in currying 

is that you instead of multiple arguments you get a sequence of functions. So, you 

consume one argument at a time, each argument transforms a function in some way by 

internalizing the most recent argument and creating a new function which will consume 

one more argument and so on. 

So, let us try to look at the type of the new plus that we have defined. So, if we start from 

the end the last thing that happens is function plus n which takes an int as an input and 

produce an int as output. So, this particular function here is int to and this whole thing is 

the output of plus. So, therefore, the type of plus is something that consumes an int and 

produces this function. So, that is why we get that the type of plus is from an input int to 

an output int to int. So, this output int to int is this box and the input int is the original int. 

So, working backwards we can take a curried function and work from the last box 

backwards to construct it is type like this. 
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Let us look at another example one that takes maybe 3 inputs. So, supposing we have a 

plus 3 which will add 3 numbers. So, now, again in the same way when I first consume 

the first n I will get something which internalizes the n, so now it will add n to whatever 

it is going to get as a next input, now we are not done. So, we will now consume one 

more input which is this one and we will now have something which has n plus m to 



whatever it gets. 

And finally, when we consume the third input here we will have this function which 

takes as from a number p to the number n plus m plus p and the point is this n plus m is a 

kind of built into the function. It is already have been hard wired in a sense, because we 

have consumed n and m as previous consume. So, now, again working backwards, so 

this last thing is the last box here, so this is an int to int function, so that is this type. 

So, therefore, if go to the previous box, so this now takes as input an int and produce 

that. So, that is this function and finally, the outermost takes an int and produces int to int 

n and therefore, the type of plus 3 this is whole expression. So, if we have a curried 

function we consume the inputs one at a time, each input transforms a function into one, 

where one value is frozen in some sense. So, the function now becomes one where one 

argument is fixed. So, we keep consuming one argument at a time keep transforming the 

function. So, that it now has some values fixed in do it and we can recover the type of the 

function by working backwards from the last box to the first box. 
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So, in general it could have a function which takes say n arguments and produces an 

answer. So, suppose in this particular function that we are looking at each of these inputs 

1 to n is int and say the last one is are type Bool then by our earlier description we would 

start by working backwards to the last box would take the last input x n and produce y. 

So, this would be int to Bool, so this is last thing and then the previous box would have 

taken x n minus 1 and produces function that would be int to int Bool and so on. So, we 



will get this nested thing sequence of int to int to int to it finally with in int to Bool. 

And logically if we look at the expression, the original function f first consumes x 1 and 

it becomes a new function. So, this is our second box, so this is like an f prime for an f 1, 

f 1 consume x 2 and this becomes a new function which has x 1 and x 2 into it we call f 

2. So, we have this implicit bracketing of the types in one sense, where the innermost 

bracket corresponds to the right most function the last input in the last output and we 

have the corresponding bracketing of the way the function is used which is that we first 

consume x 1 then we consume x 2 and so on. 
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Now, fortunately Haskell knows this, so there is an implicit bracketing which Haskell 

uses depending on the type of expression that we used, we are familiar to the implicit 

bracketing for arithmetic for example, we have this BODMAS. So, we have in 

BODMAS it says that if I right for instance 7 plus 2 times 3 then it is not going to be 9 

times 3, this is not a correct answer, so this is not 9 times 3 rather it is 7 plus 6. So, there 

is a precedence which says that it is bracketed like this. So, that is as division and 

multiplication and bound tighter then additional subtraction. 

Now, in a similar way when it sees expression like these arrows, then Haskell knows that 

it must bracket them in a particular way and in particular it will bracket this starting from 

the right. So, it will first put bracket only to Bool then around the previous one and so on. 

So, it will produce from the upper expression without any brackets a lower expression 

and we can freely use the upper expression without worrying about all these messy 



nested brackets. 
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The same way when we write an function with arguments as a call to the function, it will 

implicitly assume that the function is bracketed from the left. So, it will put in these 

brackets it will start with bracket around x 1 then a bracket around x 2 and so on and 

finally, it will produces bracket around this. So, we do not have to worry about this 

bracket, so that is very nice for us, so it means that the built in bracketing rules in 

Haskell take care of the usual thing that we expect. So, unless we want to do something 

unusual, we do not need brackets. 

Now, we have seen an example where the scan create a problems, remember when we 

defined factorial we had to be careful put a bracket around the n minus 1 and that is 

precisely because of this rule. Because, Haskell when it says factorial of n minus 1 

without bracket will first take factorial and bind it to nearest thing and this is like having 

two different operator, one is factorial with an argument and the other is subtraction. 

So, just like division and multiplication will get bound a head of subtraction, so will the 

function call. So, this becomes factorial of n minus 1 and this is not what we expect, so 

we have to be a little aware of how this bracketing is done. Because, in such situation we 

may need to insert brackets to ensure the Haskell is, understanding the expression the 

way we intend it. 
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So, to summarize Haskell uses currying as a notation for functions and in currying, the 

basic simplification is that functions do not have arties, we do not have to say a functions 

of binary function or a currying function taking k arguments, every function takes only 

one argument. So, if a function takes multiple arguments it consumes these one after the 

other, each argument transforms the function by internalizing that argument and making 

it into a new function where one of the arguments is frozen. 

So, this becomes very convenient we will also see that we can use these intermediate 

functions in other contacts. So, there is actually if we define a function of two arguments 

then a function in which only one argument is provided in currying is partially in other 

function, it say if I take plus m n and I feed 7 then plus 7 is a new function which will 

add 7 to whatever it gets. I can actually treat this partially instantiated function as a real 

function in many contexts we will see. 

And associated with currying is the simplicity bracketing which is right to left for types 

and left to right for function application, but fortunately this bracketing is build in to 

Haskell's bracketing rules along with arithmetic and Boolean expressions. So, we do not 

have to use brackets unless we really want to disambiguate something. 


