
Function Programming in Haskell 

Prof. Madhavan Mukund and S. P. Suresh 

Chennai Mathematical Institute 

 

Module # 07 

Lecture - 02 

Input / Output 

In this lecture, we shall study Input Output in Haskell. 

(Refer Slide Time: 00:08) 

 

Till now, the view we have taken is that a program is a bunch of functions, a function of 

type a arrow b produces a result of type b on an input of type a. The programs are 

running ghci by invoking a function on some arguments, ghci automatically displays the 

result on the screen provided the result can be shown or in other words, provided the 

result is a type that belongs to the type class show. 



(Refer Slide Time: 00:46) 

 

But, this is the limited form of interaction with the user, we would like a slightly better 

user interaction model like another program languages. So, the questions we have can we 

execute programs outside ghci, how do you let the programs interact with users that is 

accept user inputs midway through a program execution. Print output and diagnostics on 

a screen or to a file, can interaction with the outside world be achieved without violating 

the spirit of Haskell. So, these are some other questions that we considered in this 

lecture. 

(Refer Slide Time: 01:25) 

 



We shall first consider standalone programs, execution of a Haskell program starts with 

the function main, this is not something we have seen till now. Till now, our program 

was disturbance, the functions and ghci automatically interpreted any function that we 

entered in it. But, if you have to write a standalone program, execution has to start with 

some place and that is the function being, every standalone Haskell program should have 

a main function. 

(Refer Slide Time: 02:03) 

 

Here is an example program, in fact this is the simplest compliable program that we can 

write, main equals putStr which stands for putStr Hello world with the new line character 

here. So, this as the name suggest put a string on the screen, so the way we run this is to 

save this in to a file named hw dot hs, hw standing for Hello world. We compile this file 

using the command ghc hw dot hs. Compiling this generate the following files, hw dot 

hi, hw dot o and hw, the file of interest was the hw without any extension. 

If you see this on a unique terminal, we will see that the permissions for these two are 

retried, but hw has execute permissions or in other words 7 5 5. We can run the 

executable using dot slash hw, dot denotes the current directory, dot slash hw means that 

the executable files hw can be found in the current directory. If you add the path, where 

your Haskell executable reside your path environment, you can just invoke the functions 

using hw, but for now in the examples we will just use dot slash programming. 



(Refer Slide Time: 03:45) 

 

GHC is the Glasgow Haskell Compiler, ghci that we have been using till now is the 

interactive version of the complier, one can view ghci as an interpreter or a play ground 

in which to test your programs. If the program is indented for use by others, then it is 

usually written as a standalone program, complied using ghc and shipped. Complied 

versions of programs run much faster and use much less memory as compare to running 

them in ghci. 

If you check the various options that ghc offers by typing ghc minus, minus help in the 

terminal, you can use ghc minus, minus show options to know all the options that you 

can provide, all the complier options that you may provide to ghc, but this is a huge list. 

If you want to know more about ghc and ghci, you can consult the GHC Manual at this 

url, which is the part of the official Haskell page. So, we have learnt how to write a 

simple program which standalone and turns on it and compile it and run it. 



(Refer Slide Time: 05:05) 

 

Let us study the program in more detail, main equals putStr Hello world with the new 

line character behind, put string is a function, the behavior is that putStr str putStr of 

string print the string str on screen. So, clearly putStr is of type string arrow b for some b, 

because the input is a string, but you notice that in this main program the return value is 

not used at all. So, perhaps we can say that putStr does not return anything of 

significance, the type null or empty as it is called denotes nothing or it can be used to 

model nothing. This type empty is denoted like an empty tuple and it consists of single 

value, which is also denoted by an empty tuple, so the question is, is the type of putStr 

string arrow empty. 



(Refer Slide Time: 06:25) 

 

But, we notice that putStr is not an expression that returns a value and more over, it has a 

side effect, which is that of printing something on screen. So how do we account for the 

side effect? So, if you actually type colon t putStr in ghci, you will see that ghci says 

what the type of putStr is, the type is string arrow IO empty. If you check what the type 

of putStr Hello world is, you will see that, the type is IO empty. 

(Refer Slide Time: 07:13) 

 

So, what is this IO? IO is a type constructor, just like some other type constructors we 

have encountered in previous lectures like List or BTree or AVLTree, etcetera. So, 



therefore, IO a is a type whenever a is a type, but there are distraction. Recall that the 

value constructor and internal structure or user defined data types like list BTree etcetera 

are visible. But, the internal structure and constructor of IO are not visible to the user in 

other words the user cannot do any kind of pattern matching based on the constructors of 

IO. 

(Refer Slide Time: 07:57) 

 

One can understand IO is as follows it is data its declaration can be thought of as data IO 

a equals IO the IO on the left is the type constructor the IO on the right is the value 

constructor. And the values are of type real world arrow the pair real world comma a real 

worlder is not an actual Haskell type, but it just one way we can understand, what IO 

means assume that there is a type, which represents all states of the real world. 

So, we can thing of IO as taking as input the current state of the real world and producing 

the new state of real world due to side effects and also produce an value of type a. In 

other words object of IO a constitute both of value of type a and a side effect namely the 

change in state of the world. 



(Refer Slide Time: 09:06) 

 

Technically an object of type IO a is not usually referred to as a function, but of the IO 

action this is the important distinction. An IO action produces as a side effect when its 

values is extracted any function that produces as side effect will have return type IO a. 

(Refer Slide Time: 09:32) 

 

So, lets get back to put string putStr is a type string arrow IO empty putStr takes as string 

is the argument and returns in the empty tubule. And in the process of producing the 

empty tubule is out as output it also produces the side effect when the return value is 

extract. The side effect in the case of putStr is that of printing on screen the string that is 



provided as argument main as you can see is of type IO empty main is always of type IO 

a for some a. 

(Refer Slide Time: 10:15) 

 

Now, we talked about side effects in the course of executing an action, what kind of side 

effect can happen examples of printing on screen, reading the user input of from the 

terminal, opening or closing a file, changing the directing, writing in to a file etcetera are 

may be launching a missile driving a truck etcetera. 

(Refer Slide Time: 10:45) 

 



Now, there is a close variant of putStr namely putStrLn you can read it as putStr line 

putStr Hello world print the string on screen, where a putStr line Hello world prints the 

string and appends a new line on the screen. So, putStr line str is equivalent to putStr of 

str plus plus the new line character. 

(Refer Slide Time: 11:17) 

 

Standard of action not of much use unless you can perform a lot of actions and a Haskell 

provides away to chain actions use the command do to chain multiple actions. For 

example, you could say main equals do putStr lien Hello putStr line, what is your name, 

do makes the actions take effects in sequential order one after the other in the order 

presented in the text in the program text. Here the intention important in the do 

command, but in the indentation sometimes add to keep truck of… 



(Refer Slide Time: 12:00) 

 

Haskell offers an alternative friendlier syntax, which is to use braces some semi colons 

main equals do open brace put string line Hello put a semi colon put string line, what is 

your name, with the semi colon and close the brace. And the actions can also occurrence 

inside, let where etcetera etcetera. For instance main equals do act one semi colon act 

two where act 1 is put string Hello act 2 is putStrLn world. So, you can define local 

actions. 

(Refer Slide Time: 12:42) 

 



Here are some more actions print is signature is show a implies a arrow IO empty this 

outputs a value of any printable type to the standard output, which is the screen and as in 

new line. PutChar is a functions from char into IO empty it writes the car argument that 

is provided to it on the screen. Get line is a type IO string if reads the lines from the 

standard input and return it as a string the side effect of get line is the conception of line 

of input rather than the production of an input and the return value of get line is a string 

getChar is a function that reads the next character from the standard input. 

(Refer Slide Time: 13:38) 

 

We saw the get line is a type IO string, but is there a way to use the value that is return 

by get line. In other words we need to bind the return value of get line to an object of 

type string and perhaps use it elsewhere. Haskell provides the following syntax for 

binding and syntax is ruminant of assignment on the some other languages, which is just 

to say less than hyphen it is like a left arrow for instance you could do this main equals 

do put string line please type your name n bond by get line or another words the output 

of get line is bond to n. 

And I can use it here, in the following action, which is put string line Hello plus, plus n 

this. As the effect of first asking the user for the name waiting for the user two input her 

name and press the enter key and then printing Hello followed by her name on the 

screen. 



(Refer Slide Time: 14:56) 

 

Please note that this is wrong putStrLn of Hello plus, plus get line this is because plus 

plus is a. So, called pure Haskell function or operator and it is arguments are list a and 

list a and the output is mistake the arguments are not a type IO a. Therefore, you cannot 

use get line in the contest of plus, plus you should always binded to some name and then 

use that name get line is not a string and the action that returns from, but as to extracted 

before the use the extraction is the binding that is function here. 

(Refer Slide Time: 15:47) 

 



At this point we need to look a little closer at the distinction, but in functions on the 

actions. A function that takes an integer one the argument and returns an integer as a 

result has type Int arrow Int an action that has a side effect in addition to consumer an 

integer and produce an integer as type Int arrow IO Int. This distinction that Haskell 

maintains is an contrast two languages like c or java, where the type signature of both 

functions that have side effects and functions that do not have side effects are just Int 

arrow int. 

And in general any function is assumed to potentially produce a side effect any function 

can produces a side effect there is nothing in the language itself that province functions 

from produce in side effects. Haskell enforces this distinction between pure functions 

and actions the functions that you seen till now that of free of side effects are called pure 

functions there type gives all the information we need about invoking the function on the 

same arguments always yields the same result. On the order of evaluation of sub 

computations does not matter Haskell utilizes this to great effect in applying its lazy 

strategy. 

(Refer Slide Time: 17:20) 

 

In contrast functions actions usually have side effects and Haskell maintains this 

distinction by designating the output types with an IO. The presence of IO in the type 

indicates that actions potentially have side effects external state is usually changed on the 



order of computation important as in actions inside at do command. The action takes 

place in a sequence, so sequence in is something that is inherent to actions. 

(Refer Slide Time: 18:03) 

 

More over perform in the same action on the same argument twice might have a different 

results. For instance consider the following action greetUser, which is the type string 

arrow IO empty greetUser greeting equals do inside the do block we have put string line 

please enter your name which by hence the value of get line the value of the return value 

of get line ((ReferTime18:38)). Then, we put another string on the screen put string line 

Hi plus, plus name plus plus full stop plus plus greeting. 

So, this greeting is something provided does not input in main we can do the following 

greet user welcome greet user welcome. You see that the greet user function is being 

called with the exact same argument twice, but the two actions might print different 

things on this screen depending on the name that is input by the user at this point. 

Because, the greet user action with itself has a way to get input from the user and type 

the input back to the user namely the use as name. So, this shows that performing the 

same action on the same arguments twice might have different results and this is the 

fundamental difference between actions and functions. 



(Refer Slide Time: 19:44) 

 

One can combine pure functions are actions, but in the limited manner we can use pure 

functions as subroutines and IO actions, but not the other way round. The Haskell type 

system allows us to combine pure function and actions in a safe manner no mechanism 

exist to execute an action inside a pure function even though pure functions can be used 

the subroutine inside actions. IO is perform by an action only if it is a executed from 

within another action and main is, where all the action begins. So, main embed some 

actions inside it and a each of those actions might be a do block with further action 

inside. 

(Refer Slide Time: 20:31) 

 



Let us look at a few examples, here is one example, which is to read a line and print it 

out as many times as the length of the string that is in put on the first line. Here is the 

program main equals do get a line and bind it to inp it stands for input it is a variable of it 

is a values of types string. Call the function print often to print input length input times, 

if input is of length n, then print of n input will we called and it will to be print in printed 

n times. 

Thus achieved as follows print often is the function from Int and string for IO empty 

print often one string is just put string lines string print often n string is recursive 

function inside a do block the first put string line string and then you print often n minus 

1 times string. So, this is an example of a non trivial interaction with user, but what is the 

user input the empty string notices that, if length of the input equal 0 there is no case here 

the catches it. 

(Refer Slide Time: 22:03) 

 

What is the user inputs the empty string, to handle this we need to define print often 0 

string recall that the return value of print often this IO empty print often 0 string the 

student be any anything printed on the screen. So, can we just define it to be empty, but 

the output type then would be empty and not IO empty. So, you get a type mismatch this 

means that you need of way to promote the empty tubule to an object of type IO empty 

this is precisely achieve by the return function. The return function of the return action 



takes v, which is the value of type a and a produces an action of type IO a, if v is a value 

of type a return v is of type IO a. 

(Refer Slide Time: 23:06) 

 

With this we can fix the earlier example as follows main equals do get a line and bind it 

input print often length input the crucial cases this print often 0 string equals return 

empty. This matches the type properly and it also handles this case in the case of not 

printing anything on screen. Notice, that here there is no side effect as such, but still we 

designate this as type IO empty. So, this illustrate the fact that if an object is an type IO a 

it need not necessarily produce a side effect it only indicates the potential to produces 

side effect where as a poor function, which is not to type is not embedded to bio can 

never produces side effect. 



(Refer Slide Time: 24:13) 

 

Here is an another example n times, which takes an integer and a action and repeat the 

action and n times this is the generalization of, what we did in the previous example, 

where we printed input out to the screen some n times, where n is the length of the input. 

So, n times 0 a is just return empty n times n a is do a followed by n times n minus 1 n 

times n minus 1 a which is two do the action a n minus 1 to x. Now, we can read and 

print 100 lines as follows main equals n times 100, at where act equals this block, which 

reads an input from the user and out and prints out that it get line binded to input putStr 

line input this action is repeated 100 times by main. 

(Refer Slide Time: 25:15) 

 



Strings are not the only things that can be read, we can read other values, but these other 

values how to belong to a type a that is an instance that type class read. For this we use 

the function read line, which is denoted read Ln to type is a read a implies IO a all the 

basic type Int, Bool, char etc or instance of read. Therefore, you have you can use read 

line to read integers Booleans characters etc the basic type constructor also preserve 

readability. 

So, for instance list Int the triple Int comma char comma Bool etc are also instance of 

read. Here is the syntax to ready an integer input read Ln colon colon IO Int and bind the 

result to. So, you since read Ln is suppose to cater the reading of any of these type, that 

belongs to class read you need to specify, which type you want to the input to be. 

(Refer Slide Time: 26:38) 

 

So, here is an example, in this example we read a list of integers one on each line and 

finally, terminated by minus 1 in to a list and print to the list main equals do l s is read 

list l s is the return value of read list empty list. So, read list is the function you are 

providing the empty list as a as an input to read list it is of type list Int arrow IO list Int. 

So, it produces some side effect and it is return value is a list of integers, which is what is 

bonded to the l s here and then it, so happens that read list read the list in reverse order. 

So, we show the reverse of l s and invoke put string lines on it in this way we read a 

pouch of integers one on each line and output them as a list. Here is the description of 

read list read list l equals do read line as an integer in this denote by saying read Ln colon 



colon IO Int bind the return value of input, if input is minus 1. Then, there is nothing 

more to do, so you just return l, which is the list that was provided as input else you read 

the input you add the input to the list by saying input colon l you add it to head of the list 

and you proceed with the read list function presumably reading more input. 

(Refer Slide Time: 28:27) 

 

In summary Haskell has a clean separation of pure functions and actions with side effects 

actions are used to interact to the real world and perform input output main is the action, 

where the computation begins ghc can be use to compile and run programs. So, there is 

the lot more to explore in IO put only the most basic material is covered, here with 

suffices for rudimentary interaction with uses. 


