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Module # 06 

Lecture – 03 

Balanced Search Tree 

In this lecture, we shall study AVL Trees, which is an example of a Balanced Searched 

Tree. 
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Recall that in the previous lecture, we studied implementations of the set data type, 

which maintains the set of elements and supports the operations search, insert and delete. 

We saw two implementations, one which was to store the elements as a list and on the 

other, which was to store the elements as a binary search tree. The list implementation 

was considered inefficient, because each search takes time propositional to the length of 

the list, in other words the number of elements in the set. 

So, N operations can take up to order N squared time. On the other hand, the binary 

search tree data structure supports insert, search and delete in time propositional to the 

height of the tree. But, in general, a tree might not be balanced, for instance, inserting 

elements in ascending or descending order results in highly skewed trees. 
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Here are two examples, if we consider make tree of 1 to 6, recall that make tree was a 

function that starts with the nil tree and inserts all these elements in the list one after the 

other. So, make tree of 1 to 6 will create a tree that looks like this; it is skewed to the 

right. Make tree of 6 comma 5 dot, dot 1 inserts elements in descending order into the 

tree and this tree is skewed to the left. It will start on 6, the next element to be inserted as 

5, which will go to the left of 6. 

The next element to be inserted is 4, which will go to the left of 6 and to the left of 5 and 

so on. So, in general, it is possible that a tree has height as much as the number of 

elements on the tree. This means that the operations on the binary search tree might take 

up to order N time for search, insert and delete. So, sequence of n operations might still 

take up to order N squared type. 

So, where is the advantage in using a binary search tree? The answer is that we can 

manage to balance a tree, so that it is of small height. This brings us to the concept of a 

balanced search tree. 
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Ideally, we want that for each node, the left and right subtrees differ in size by at most 1. 

If we maintain this property, then the height of the tree is guaranteed to be at most log N 

plus 1, where N is the size of the tree. The proof is as follows, when the size of the tree is 

1, the height is also 1, which is the same as log 1 plus 1. When the size of the tree is N 

greater than 1, then observe that both subtrees are of size at most N by 2, because if each 

subtree is of size greater than N by 2, then the tree itself would be of size greater than N. 

And now, inductively we can see that the height of each subtree is log N by 2 plus 1, 

which is the same as log N minus 1 plus 1, which is the same as log N. And therefore, 

the height of the tree itself which is 1 plus maximum of the height of the two subtrees is 

1 plus log N. 
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But, the trouble is that it is not easy to maintain size balance, what we shall ask to do is 

to maintain height balance instead. This is maintained as follows, at any node we 

maintain the invariant that the left and right subtrees differ in height by at most 1. In the 

earlier case, the left and subtrees, the left and right subtrees differed in size by at most 1. 

But, now we will maintain the somewhat easier to maintain property of the left and right 

subtrees differing in height by at most 1. 

We maintain this property by using tree rotations, which we will describe later. These 

trees are called AVL trees, named after the inventers of the data structure Adelson 

Velskii and Landis. One can prove that, if we maintain this property, the height of the 

tree is order log N, where N is the size of the tree. 
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Here is an example, on the left, you see a tree that is both height balanced and size 

balanced. We can check it as follows, the tree is of size 6, there are three nodes in the left 

subtree; that is the root node here and there are two nods in the right subtree and you see 

that the difference in size of left and right subtrees is 1. There are three nodes in the left 

subtree; there are two nodes in the right subtree. If we look at the left subtree, the 

difference in size of the left and right subtree of this tree is 0. 

Because, the left subtree here is just the single node 1, the right subtree is just the single 

node 3 and there are of the same size. So, the left part is size balanced. So, if you 

consider the right subtree of the original tree, it is this tree, 5, where the right child 6 and 

with no left child. Here, you see that the left subtree is of size 0 and the right subtree is of 

size 1. 

So, in this tree, we maintain size balance throughout, it is also true the height balance is 

maintained, because on the left, if you take the overall tree, the left subtree is the height 

2, the right subtree is of height 2. So, take this tree, the left subtree is of height 1, the 

right subtree is also of height 1. So, if you take this subtree the left subtree is of height 0 

and the right subtree is of height 1. So, this tree maintains both height balance and size 

balance. 

The tree on the right is height balanced, but it is; however, not size balanced. So, if you 

take the overall tree, the height of the left subtree is 2, because there is one node here and 



it has two children, the height of the right subtree is 1, so the difference is 1. If you 

consider this subtree, there are no children, so it is trivially height balanced, if you 

consider this subtree, it is also height balanced, because the height of the left subtree is 1 

and height of this subtree is 1. So, both the left and right subtrees of this tree are height 

balanced, but it is not size balanced, because the left subtree has three nodes and the right 

subtree has only one node. 
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Before, we move on to the implementation of a height balance tree, let us us look at the 

bounds. We claim that for a height balanced tree of size N, the height is at most twice log 

N, the proof is as follows. Let us h be the size of the smallest height balance tree of 

height h, we claim that for h greater than or equal to 1, S of h is greater than or equal to 2 

to the h by 2, S of 1 equals 1, which is 2 to the 1 by 2. 

Here, we take 1 by 2 to the 0, S of 2 equals 2, which is 2 to the 2 by 2, S of 2 equals 2, 

because this smallest height balance tree of height 2 that we can create is a node and one 

child. So, it is the two node tree. 
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In general, if at tree has height h, then one of it subtrees is of height exactly h minus 1, 

on the other has height at least h minus 2. Now, the height of a tree is defined to be 1 

plus max of the height of the two subtrees. So, one of the subtrees definitely has to have 

height exactly h minus 1 and the other subtree cannot have height smaller than h minus 

2, because that would violated the height balance property. 

Now, S h in general is 1 plus S h minus 1 plus S h minus 2, which is greater than or 

equal to this is the loose bound S h minus 2 plus is h minus 2, which induction 

hypothesis 2 to the h minus 2 by 2 plus 2 to the h minus 2 by 2. This is nothing but, twice 

2 to the h minus 2 by 2, which is 2 to the h minus 2 by 2 plus 1, this simplify to h by 2. 

So, overall we have S of h is greater than or equal to 2 to the h by 2, therefore, a height 

balance tree with N nodes as height at most twice log N. 
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Having established the mathematical bounds, let us look at how to implement a height 

balanced tree. If you recall, we mention that, we maintain height balance by using tree 

rotations, there are two types of tree notations, rotate right and rotate left, rotate right is 

defined as follows. We have a tree with root x and a left subtree with it is own root y and 

subtree is t 1 and t 2, the right subtree of the bigger tree is t 3. 

Now, we rotate this to the right by which we mean that will push this y up to the root and 

pull the x down, by pulling the x down, we mean that we will make x the right child of y. 

But, if so, what do we do with the original right child of y, we make that the left child of 

x, recall that y was the earlier the left child of x, but now once we pull x down, x does 

not have a left sub child, left child, so we can make t 2 to the left child of x. 

In doing this, we still maintain the binary search tree property, notice that, every node in 

t 1 is smaller than y, t 1 appears to the left of y, y appear to the left of x, y is smaller than 

x. But, now x appears to the right of y and clearly y is smaller than x or in other words, x 

is greater than y, every node in t 2 appears to the right of y, so it is greater than y. But, on 

the other hand, it appears in the left subtree root of vertex, so it is smaller than x. 

If you look at the new configuration t 2 appears to the left of x, so every node in t 2 is 

smaller than x, but t 2 is part of the right subtree of y, therefore, every node in t 2 is 

greater than y. So, the search tree property, if it was maintain earlier, it would also we 



maintain after the rotate. This operation is useful when t 1 has large height, as you can 

see now earlier the subtree to the left of x had height 1 plus height of t 1. 

Now, the left subtree of the root as only height t 1, so in this manner, we can reduce the 

height of the left subtree of the overall tree. The rotate right operation can be 

implemented in Haskell as follows rotate right of node, node t 1, y t 2; we just state this 

pattern here, x which is the root, t 3, which is the right subtree equals we just right the 

pattern for this tree. Node t 1, which is the left subtree, y which is the root and node t 2 x 

t 3, which is the right subtree. 

The symmetric operation is rotate left, where the original tree has root y and right child x 

with it is own subtrees t 2 on t 3, the left child of the original tree is t 1. Now, in case t 3 

has large height, we might want to push t 3 upwards the root of the tree, which is what 

we are doing. We are achieving this by pushing x towards the root of the tree and pulling 

y down. So, when we push x 2 to the root of tree and pull wild on, y becomes the left 

child of x, the previous left child of x namely the subtree t 2 now becomes the right child 

of y, because now earlier the right child of y was x. 

Now, the right child of y has been freed up, so we can let t 2 occupy that position. Again, 

we can check that, if the original tree satisfies the search tree property after the rotate left 

also, the tree will continue to satisfy the search tree property. This operation is useful and 

t 3 has a larger and it exactly the inverse of rotate right and the Haskell description is 

again very simple. Rotate left of this pattern, which is specified by node t 1 y node t 2 x t 

3 equals node of left subtree which is node t 1 by t 2 x, which is the root and t 3, which is 

the right subtree. 
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Having seen the operations rotate right and rotate left, we will now see, how to use those 

two operations, assume that the tree is currently balanced, each insert or delete operation 

performed on the tree might create an imbalance. What we do is to fix the imbalance 

using a rebalance function, which involves rotate right and rotate lefts. Before, we 

actually describe the rebalance function; we will take care of some preliminaries. 

We need to compute height of a tree and it is subtrees to check for imbalanced. Recall 

that, we are implementing a height balanced tree and imbalance means that, we have a 

node, such that, one subtree and other subtree differ in height by at least 2. 
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So, we need to compute the height of a tree and it is subtrees to check for a imbalance, 

usually height would be defined as follows, height of nil equal 0, height of node t l x t r 

equals 1 plus max height t l and height t r. But, unfortunately this definition takes order 

N time to compute height and we would not like to spent order N time for performing an 

operation, which would be perform multiple times during each insert and delete. We can 

save this effort by storing the height at each node. 
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So, the new structure is as follows data AVL tree a equals nil or node AVL tree a with 

stands for the left subtree, a with stands for the value at the node, Int with stands for the 

height, AVL tree a, which stands for the right subtree. Now, the height function is a 

constant time operation, which is define as follows, height nil equals 0, height node t l x 

h t r equals h. 

We also need a measure of how is skewed a tree is, namely it is slope and it define it as 

follows, slope of nil is 0, slope of node t l x h t r is nothing but, height of t l minus height 

of t r. We use this to determine whether a tree is still balanced or not, if slope is greater 

than or equal to 2, then r greater than or less than or equal to minus 2, then we know that 

the tree has an imbalance. 
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Let us now give implementations of rotate right and rotate left with the new data 

declaration. The wrinkle is that, since we store the height at each node, every time we 

touch the tree, we need to adjust the height. So, that definition of rotate right, rotate right 

of node t l l, y, h l, t l r, t l l is the subtree of the left subtree, t l r is the right subtree of the 

left subtree, h l is the height of the left subtree, x which is the root, h which is the height 

of the tree itself and t r, which is the right subtree of the original tree, equals node t l l y n 

h node t l r, x, n h r, t r. 

This definition is exactly the same as the definition earlier except that we need to 

recomputed the heights, n h is the new height of the overall tree. And n h r is the new 



height of the right subtree, n h r clearly is 1 plus max of height t l r and height t r, n h is 1 

plus max of height t l l and n h r, because if the overall tree n h r is the height of the right 

subtree and n and height of t l l is that the left subtree. Clearly, this is the constant time 

operation, because we modify one pattern to another pattern and in computing the new 

heights, we are just comparing a constant number of heights 7’s to each other. 
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Here is the symmetric definition for rotate left; we just repeat the earlier definition with 

the appropriate heights, inserted. And in the result, we have the new heights n h l and n 

h, we are again n h l is defined as 1 plus max height of t l height of t r l, n h is defined as 

1 plus max of n h l and height of t r r. This is again the constant time operation. 
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Having looked at the rotates, let us now considered how to rebalanced trees, this is the 

most crucial function in the implementation of AVL trees. Recall that is slope of a tree 

here is the height of the left subtree minus height of the right subtree. In height balanced 

tree slope is minus 1 or 0 or 1, but after I insert or delete, it can happen that the slope is 

minus 2 or plus 2. A slope of minus 2 or plus 2 constitutes a violation, it cannot be less 

than minus 2 or greater than plus 2, because we are just inserting one node or deleting 

one node. 

Now, the violations can happen only at nodes that are visited by an operation, recall that 

to insert or delete, we need to start at the root and search for the node that we need to 

insert or delete and in doing so, we will traverse in the path from root to that node. Only 

those nodes along the path will be affected. So, what we need to do is to rebalance each 

node on the path visited by the operation. 
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They are many cases to consider, let us first consider the case where the slope is plus 2, 

which means, that the height of the left subtree is exactly two more than the height of the 

right subtree. The case where slope is minus 2, this symmetrical to this and we will not 

be elaborating that, so let us assume that, the slope of a tree is plus 2 and both subtrees 

are balanced. 

Here, two cases might arise, let us look at the first case, the first case is when slope of 

left subtree is 0 or 1. Here, is the scenario, we have a root x, whose left child is y, which 

is the root of a tree consisting of y, t 1 and t 2. Now, we said that this slope of the overall 

trees 2, therefore the height of the tree root at y is h plus 2 and height of t 3 is h. If the 

height of the tree rooted at y is h plus 2, it means that one of the children is of height h 

plus 1 or the other child is of height h or h plus 1. 

Since, we said that the slope of the left subtree is 0 or 1, therefore it has to be the case 

that the height of t 1 is at least as much as the height of t 2. If the height of t 1, where 

smaller than the height of t 2, then the slope of the tree rooted at y could actually be 

minus 1. Since, we said the slope of the left tree is 0 or 1, it has to be the case that t 1 is 

height of h plus 1 and t 2 is of height either h or h plus 1, this is the scenario. 

In which case, all we need to do is rotate right, this brings y up to the root, it brings h 

down to be the right child of y and it shifts t 2 from being the right child of y to the left 

child of x, everything else is unchanged. Let us look at the slopes of the various subtrees 



before and after the operation, earlier the slope of x was 2 and slope of the left subtree 

was 0 or 1. 

Now, the slope of the new tree is height of left subtree, which is h plus 1 minus the 

height of the right subtree, which is either 1 plus h or 1 plus h plus 1. So, the height of 

the right subtree is either h plus 1 or h plus 2. So, in doing this rotate right, we have 

manage to bring this slope from 2 either 0 or minus 1. This is for the root node, for the 

right subtree, the slope is just plus 1. So, the new tree that we get is height balanced. 
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Here is the next case, this is the case when the slope of the tree is 2 and both subtrees are 

balanced, but the slope of the left subtree is minus 1. So, the tree looks as follows, we 

have the root x, whose left child is y, which has subtrees t 1 and t 2, but expanded t 2 into 

it is root z and the two subtrees, t 2 1 and t 2 2, the right subtree of x is t 3. Since, this 

slope of the tree is 2, the height of the left subtree rooted at y is h plus 2 and the height of 

t 3 is h. 

But, the slope of the left subtree is minus 1, which means that the height of t 1 is h and 

the height of the subtree routed at z is h plus 1. For the height of the subtree routed at z to 

be h plus 1, it has to be the case that either t 2 1 or t 2 2 is of right h and the other is of 

height h minus 1. So, this is the scenario, now we achieve a height balance tree in two 

steps, in the first step, we rotate left at y, so what happens is that, we just concentrate on 

the left subtree of the original tree. 



This portion and we rotate left at y, which means that, we pull z up, we push y down that 

is what we have done. But, when you pull z up and push y down, you make y the left 

child of z, which means that t 2 1 means that place to go and it goes as the right subtree 

of y, which is what happens here. You have t 1 choose the original left subtree of y, still 

being the left subtree of y, but you have t 2 1, which will originally to the left of z, now 

to the right of y, z has moved up and become the parent of y and t 2 2 is as before the 

right subtree of the tree routed at z, we only change to this portion. 

Now, what we have what we have achieved is to balance the subtree routed at y. So, 

consider this subtree routed at y, the slope is either 1 or 0, but the subtree routed at z 

might have an imbalance and we in balance will occur in case t 2 2 is of height h minus 

1. Because, the left subtree routed at y, now has height h plus 1, because t 1 is of height 

h, but the right subtree has height only if the right subtree has height only h minus 1, then 

there will be an in balance of z. 

And this in balance would be caused by it is slope being 2 to fix this situation would was 

simple trick which is to do a rotate right at x. If you do a rotate right at x, what happens 

is that x goes down as the right child of z, z becomes the new root, t 2 2 becomes the left 

child of x, this is the situation. We have z as the root y as the left child of z and t 1 and t 

2 1 being the subtrees of the tree routed at y has before as here. But, we would done a 

rotate right at x, so z is the root, x is the right child and t 2 2 and t 3 are children or 

subtrees of the tree routed at x. 

Now, let us compute the various heights height of t 1 has not changed it height of t 2 1 is 

either h or h minus 1 height of t 2 2 is either h or h minus 1 t 3 is of height h. now, height 

of the subtree rooted at y is h plus 1 and height of the subtree rooted at x is also h plus 1. 

So, we have got at tree whose slope is 0 and balance has been restored. 
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Rebalancing for the case when slope equals minus 2 is symmetric to the slope equals two 

cases. We have two sub cases, one where the slope of the right subtree of the root is 

either 0 or minus 1 and 1, where the slope of the right subtree is 1 and the cases are 

handle symmetrically. 
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So, here is a Haskell implementation of the rebalance function, rebalance is a function 

from which takes an input AVL tree a and produces an output of type AVL tree a. 

Rebalance of node t l, x, h, t r is in the case, where the absolute value of x t is less than 2, 



s t is the slope of the tree, slope of node t l, x, h t r. Just for references t l is the slope of 

the left subtree, t l, s t r is the slope of the right subtree t r. 

So, in the case where the absolute value of s t is less than to which means that s t is either 

minus 1 or 0 or 1, then you just written that tree as it is. In case when s t is equal to 2 and 

s t l is not equal to minus 1, which means that s t l is either 0 or 1, this is the first subcase 

we looked at, then you just do a rotate right at the root x. In case the slope is 2 and the 

slope of the left subtree is minus 1, then you first do a rotate of the left subtree and then, 

you do a rotate right of the overall tree. 

And the cases for the slope being minus 2 are symmetric, if the slope of the tree is minus 

2 and slope of the right subtree is not equal to 1, then you do a rotate left at the root. If 

the slope is minus 2 and the slope of the right subtree is plus 1, then you first do a rotate 

right of the right subtree and then, you do a rotate left at the root. It is left is the exercise 

for the reader to work out the symmetric cases and ensure themselves of the correctness. 

Notice that, rebalance is the constant time operation, because we just do either a rotate 

right or a rotate left or a rotate right and a rotate left. Recall that, rotate left and rotate 

right at themselves constant time operations and apart from this, we just compute the 

slope, which is again constant time operation. 
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Now, let us consider the key functions on a AVL tree, namely search, insert and delete. 

Search is as usual, search of nil v is false, search of node t l, x, h t r; we are searching for 

a value v in a tree given by this pattern. If x is the same as v, then you written true, if v is 

smaller than x, then you have to decent down the left subtree. So, you do a search t l, 

search t l v, otherwise you do a search t r v and the time taken this proportional to the 

height of the tree. But, now we have proved that in the height balanced tree, the height is 

twice log N, where N is the size of the tree. So, therefore search case order log N time. 
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More important is insert and delete, here we see how to use rebalance, insert is a function 

which are the signature order a implies AVL tree a, arrow a, arrow AVL tree a. This is 

the input tree; this is the value to be inserted; that is the output tree. Insert v in the nil tree 

is nothing but, node nil v 1 nil, notice that, we enter the height of the tree, when we 

create the single note tree. Insert node t l x h t r v is as usual, if x is equal to v, then you 

do not need to do anything. So, you return the tree itself. If v is smaller than x, then we 

have to insert v in the left subtree. 

So, we do a rebalance after we insert v into the left subtree. So, we do a rebalance of 

node n t l, x, n h l, t r; where n t l is insert t l v, n h l is the new height of the left subtree, 

which we calculate by 1 plus max of height n t l height t r. otherwise, this is the case 

when v is greater than x, in this case, we would a insert v in the right subtree. So, we 



insert v in the right subtree and get n h r, n t r, n t r is insert of t r v, n h r is 1 plus max 

height t l height n t r and then, we do a rebalance. 

Again, the time taken is proportional to height and we do a rebalance at each node; that 

is touched on the way to insert, but rebalance is the constant time operation and height is 

proportional to log N. So, therefore, insert again is an operation that takes time 

proportional to log N. 
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Here is delete, delete nil v is just nil, delete v from a tree of the form node t l, x, h, t r, 

again we consider three cases, if v is smaller than x, then we delete v from the left 

subtree and get n t l, n t l is delete t l v, then new height of the left subtree is n h l. This is 

computed as usual 1 plus max height n t l height t r and we take this tree under rebalance 

it. And the case where v is greater than x, we delete v from the right subtree and we 

rebalance the overall tree. 

To crucial case is, when v is equal to x in which case, we do deletion as in the binary 

search tree case, we first check if the left subtree is nil, if that is the case, then we just 

replace the tree node t l x h t r by just t r. Because, we are deleting x and there is no left 

subtree of x., so t l is nil and t r is the right subtree of x, t r can take the place of x, so this 

is what we written. 



Otherwise, we consider the maximum element of the left subtree, which is y, which is 

gotten by delete max of t l, this delete max is exactly as we saw earlier and t y is the left 

subtree after the maximum element has being deleted. And we just replace the node x by 

y here and t l is replaced by t y and h y r is the new height and the rebalance this tree. 

Again, the time taken by this operation is proportional to height which is 2 log N 

assuming delete max behaves well. 
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But, delete max does not behave well and the implementation is just like earlier. Modulo 

adjusting the heights, again time taken is proportional to twice log N. 
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In summary, we have defined AVL trees with supports a set data structure, supporting 

the operations insert, delete and search, each of which take order log N time, where N is 

the size of the set. Therefore, a sequence of n operations takes order N log N time, this is 

the fundamental, but non-trivial data structure and is an excellent example of the power 

of Haskell. As you may have seen during the course of this extended example, the 

mathematical definitions pertaining to height balance trees could be transcribed almost 

directly to Haskell code. 


