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In this lecture, we shall introduce a very important data structure the binary search trees. Imagine 

that we want to implement a set data structure it defined as follows. You want to maintain a 

collection of distinct elements and support the following operations. Insert a given value into the 

set; delete which delete a given value from the set and search which check whether a given value 

is an element of the set or not. Here is one way of defining this data set a equals set list a. Recall 

again that the set on the left hand side is the type constructor, the set on the right hand side is the 

value constructor. The name of the new type that we are defined a set a and it has single 

constructor set which takes list a as a argument and outputs an object of type set a.  
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Here is we might implement the three functions that we described earlier. Search it is the 

function with the following signature E q a implies a arrow set a arrow bool. Search of x and set 

sy, searching whether x belongs to set y recall here that set y is a list consisting of elements of 

type a, so it is the constructor. It just searching whether x is an element of y, it is given by the 

primitive function, the built in function elem which check whether x is an element of the list y. 

So this is the implementation of search. 

Insert can be implemented as follows. Insert as a function with signature E q a implies a arrow 

set a arrow set a. This is the original set and both the set that we get after the element has been 

inserted. Insert of x inside set y, there are two cases; if x is an element of y, you just written set 

y; this is because we want to maintain a set of distinct element. If x is already present, we don’t 

have to do anything. Otherwise, you insert x and y, this you do by the simple ((Refer Time: 

02:31)) attaching x to the front of the list y. So in the in the otherwise case, you define it to be set 

x colon y. 

Here is ((Refer Time: 02:49)) define delete. Delete is the function with signature E q a implies a 

arrow set a arrow set a. Delete of x from set y is nothing but the set which is gotten by uplink 

filter not equal to x on y. Recall that filter is the function that applies a predicate to a list and 

returns all the elements of the list that satisfy the predicate. The predicate that we are giving here 



is this funny looking object, this is the so called section in Haskell. Recall that not equal to is an 

operator, it’s the binary operator in Haskell. So whenever you have a binary operator, you can 

use it as a function by enclosed it parenthesis; furthermore, you can use it as not just a binar y 

function but a unary function where one of the arguments have been fixed. In this case, we have 

fixed the argument x, and you want to check whether x is not equal to any of the elements of y. 

So, this section is gotten by fixing the right argument and making this as unary function. So, this 

is the predicate that you are applying to each element in the list y. So, this function will return all 

those elements of y that are not equal to x, which means that it will delete from y.  
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Let us look at the running time of these operations for the above implementations. Search takes 

order n time, insert takes order n time and delete takes order n time. Search takes order n time, 

because built in function elem takes order n time, where N is the length of the list. Insert as you 

Insert also takes order n time, because first of all you have to make a search in the list. Delete 

takes order n time, because filter takes order n time. So a sequence of N operations takes order N 

square times, and we might want to do better than this. We can do better than this if the elements 

are ordered, but storing these elements are sorted list is not the way to go, we need a much better 

data structure.  



(Refer Slide Time: 05:37) 

 

And that brings us to a binary search tree. A binary search tree is another way of implementing 

the set data structure. A binary search tree is just a binary tree that we discussed in the last 

lecture. It stores values of type a, where a belongs to the type class Ord. So binary search tree 

makes sense only for values that can be ordered. 
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The crucial property of the binary search tree is that at any node in a binary search tree, values in 

the left subtree are smaller than the current node. And values in the right subtree are larger than 

the current node. And this holds true for a every node in the binary search tree. 
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Here are two examples of binary search trees, which consist of the elements one to six. Here is 

one tree, this tree has root four and left subtree consisting of the node one, two and three, right 

subtree storing the value of five and six. Notice how the binary search tree properties holds true 

in this tree. Every node in the left subtree has the smaller value than the root, so the left subtree 

has value as 1, 2 and three, the root has value four. Every node in the right subtree namely 5 and 

6 has value greater than four. And recursively in this left subtree, the same properties holds; 2 is 

greater than one and two is smaller than three. Similarly here, 5 is smaller than six. 

Here is the other tree which represents the same elements. This tree has root three, and the left 

subtree has the nodes two and one. In the left subtree one has to the left of two as it out to be; and 

the right subtree has the nodes 4, 5 and 6 and this itself satisfies the search tree properties 

because 5 is the root, its left side smaller than 5 and its right side has the value that is greater than 

5. 
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We define binary search tree as follows. Data STree a equals nil or node STree a a STree a. This 

this exactly similar to the definition of binary tree is that we had earlier, and we derive Eq, Ord, 

show etcetera. We might create Ord instance of the show method or we can just use the default 

show function. Just calling this STree does not make it a search tree. We could have objects of 

type STree which completely violate the search tree property. 
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So here is the function that take the search tree as input and tells whether it is indeed a search 

tree or not. It takes a binary tree as input and tells whether it is indeed a search tree or not. So this 

is the function isstree which signature is ord a implies STree a arrow bool. Isstree of nil is just 

true, because the empty tree obviously satisfies the binary search tree property. Isstree of node t 1 

x t 2 is nothing but isstree of t 1, the left subtree should recursively satisfy the search tree 

property, the right subtree also should recursively satisfy the search tree property. So isstree t 1 

and isstree t 2 and you have to check whether all the values in the left subtree are smaller than x. 

One way to check it, is to check whether the max value in the left subtree max t of t 1 is less than 

x, and we also need to check whether all the values on t 2 are greater than x, and one way of 

check it, is to check whether x is less than the minimum value on t 2 – x is less than mint t of t 2.  

But we had a extra clause here, because the max t function that we will define later, it’s defined 

only for non-empty trees. So you say either t 1 is nil or max t of t 1 is less than x, and either t 2 is 

nil, but in case it is non null, check if x is less than the minimum value in the tree t 2. This is the 

definition of is search tree. 
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The maximum value in a tree is computed as follows. Max t is a function with signature Ord a 

implies STree a arrow a. In this function, we assume that the input tree is non-nil. Max t of node 

t 1 x t 2 is nothing but max of x and max of y z. Here y is supposedly the maximum of t 1 and z 



is supposed to be the maximum of t 2, but t 1 could be empty. Therefore, the definition of y is 

slightly more complicated. The y is defined to be just x incase t 1 as nil; otherwise, it’s defined to 

be max t of t 1 recursively. And z is defined to be just x incase t 2 is nil; otherwise, it’s defined to 

be max t of t 2. 
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Symmetrically, you can define the minimum value in a tree also. Min t which is the function 

with signature Ord a implies STree a arrow a. Again we assume that the input tree is non-nil. 

Min t of node t 1 x t 2 equals min of x and min of y z, the minimum of these three values, where 

y is x incase t 1 is nil otherwise it is min t of t one. And z is x incase t 2 of nil t 2 is nil (refer 

time: 12:00) otherwise it’s min t of t 2.  



(Refer Slide Time: 12:05) 

 

Now let us look at the important function on tree, namely searching for an element in a tree. Let 

say we want to search for the element 34 in this tree; this tree consist of the nodes 41, 23, 17, 34, 

51, 62. As you can see this is the search tree, because it satisfies the search tree property. Every 

value in the left subtree is smaller than the root; and every value in the right subtree is smaller 

than is greater than the value of the root. And recursively this property holds for both the left 

subtree and the right subtree. So searching starts at the root of the tree. We check whether 34 is 

same as the value 41; in this case, we see that 34 is not equal to 41, but we also see that 34 is 

smaller than 41. And therefore, if the value 34 is represented in this tree, it has to lie in the left 

sub tree, because the value we have searching for is smaller than 41 and cannot lie in the right 

subtree, therefore we go left. 

 And we check whether 34 is equal to the value in this node; value in this node is twenty three 

which is larger than the 34. And now we know that if 34 where to be present in this tree, it has to 

be in the right subtree of this node, because the left of this node, all node, all values are smaller 

than 23, and therefore and then smaller than 34. So from here, we go right. And here we see that 

the value is indeed 34 which is what we were seeking for, so we stop at this point. 
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Let us say we are searching for 49 in the same tree. Now 49 again we start the search at the root. 

Now, 49 is greater than 41, so it has to lie in the right subtree, so we go right. The value that we 

have to examine now is 51 and 51 is greater than 49, so 49 if it exists at all has to lie to the left of 

51, but there is no element to the left of 51. So this search ends in a failure and we say that 49 is 

not present in the tree. 
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So here is the strategy for searching for an element in a tree. We are searching for a value V in a 

search tree. If the tree is empty, we report no. If the tree is nonempty then we do a case analysis.  

If the V is equal to the value at the root, we report yes. If V is smaller than the value at the root, 

we search in the left subtree, which could be empty, in which case we would report no. If V is 

larger than the value at the root, we search in the right subtree; again this could be empty, in 

which case we would report no.  
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Here is the code that realizes the above strategy.  Search which is the function with signature Ord 

a implies STree a arrow a arrow bool. Search nil v, if we are searching for the value V in the 

empty tree, then the output is false. Search of V in node t l x t r, this is the tree with left subtree t 

l, right subtree t r and the value at the root equals x. Here there are three cases, incase x is equal 

to V then we say true; incase V is smaller than x then we search in the left subtree – search t l v. 

Otherwise, we search in the right subtree – search t r v. The worst case, running time of this 

procedure is proportional to the length of the longest path from root to a leaf, because we start at 

root and keep descending the tree till we reach a leaf or we reach the value that we are seeking 

for, but we are talking about the worst case. And the length of the longest path from root to a leaf 

is nothing but the height of the tree. So in the worst case, the running time of search is 

proportional to the height of the tree. 
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Here is the other important function that we wanted to look, that we wanted to implement 

inserting an element in a tree. Let us consider the example of inserting 33 and 48 into this tree; 

the same tree that we considered earlier. 
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To insert 33 and 41, we first need to determine the location where 33 should go. So we start to 

search for thirty-three in the list, in the tree. We start at the root and compare the value thirty-



three with the value at the node which is 41, thirty-three is smaller than 41, so we descend along 

the left subtree. Now 33 is greater than 23, so it should if it were present in the tree, it should lie 

in the right subtree, so we descend right. Now see a node 34; thirty-three is smaller than 34, but 

there is nothing to the left of 34. If 33 were present in the tree, in the subtree routed subtree 

starting from 34, it should be present at the left of 34, but there is nothing to the left of 34. So 

this tells us that the element thirty-three is not present in the tree, and we can add it. And the 

most natural place to add it is, in fact the only correct place to add it is as the left child of 34, so 

we add it there. 

 Now let us consider 48. We again check with 41; 48 is greater than 41, so we descend on the 

right subtree. 51 is greater than 48, so we have to descend down the left subtree, but there is 

nothing on the left subtree. So this again tells us that 48 is not present in the tree, so we add it as 

the left child of 51. 
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So this is the overall strategy for insert. To insert a value in a search tree, you search for V in the 

tree. If V is in the tree, there is nothing to do. If not, add a node with value V at the place where 

V is missing. And the place where V is missing is found by the search routing. 
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If the tree is empty, you create a node with value V and empty subtrees. If the tree is nonempty, 

if the V is the value at the root, you exit. If V is smaller than the value at the root, you insert V in 

the left subtree; if V is larger than the value at the root, you insert V in the right subtree. 
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Here is code that realizes the above strategy. Insert which is function with signature Ord a 

implies STree a arrow a arrow STree a. Insert nil V equals node nil V nil. This is the node with 



root V and two empty subtrees. This is what happens when we insert V into the empty tree. 

Insert node t l x t r v, we are inserting V into a tree with root x at left subtree t l and right subtree 

t r. If x is the same as V then we just written that tree node t l x t r, because there is nothing to do.  

If V is smaller than x then we go down the left subtree, node insert t l V x t r. Notice that we 

modify the left subtree by inserting V into t l and then we make that new tree as the left subtree 

of the overall tree. So you first compute insert t l V and then make that the left tree of this tree 

which is given by node insert t l V x t r. Otherwise, which means that V is greater than x, you 

insert V in the right subtree; node t l x insert t r v. Again in the worst case, the running time of 

this routine is proportional to the length of the longest path from root to leaf or the height of the 

tree.  
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Let us now consider deletion from a tree. If you want to delete V from the tree, if the tree is 

empty, we can just exit, because there is nothing to delete. If the tree is nonempty, then if V is 

smaller than the value at the root then you delete V from the left subtree as usual, because V 

cannot V is evidently not the value at the root, because V is smaller than value at the root. And V 

cannot lie on the right subtree, therefore V has to lie in the right subtree, and we descend down 

the left subtree and delete v. If V is larger than the value at the root, we similarly delete V from 

the right subtree.  
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The important case is when V is equal to the value at the root.  For example, let’s consider the 

tree with root y, left subtree consisting of the node x and its subtree is t 1 and t two. Right subtree 

being a node z with left subtree t three and right subtree t four. Now if we want to delete v, we 

have to remove y from this tree. But if you remove y, what node should be should replace y, is it 

x or z or something else? One can easily see that it is not possible to blindly push x or z up the 

tree.  
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This is illustrated in the following example. Suppose we want to delete 41 from this tree; this is 

the tree that we considered earlier after we have been inserted 33 into that tree.  
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Suppose we want to delete 41 from this tree, we cannot shift 23 up, because there is conflict of 

the value 34. 34 earlier, it was in the right subtree of a node having the value of 23, but now it is 

part of left subtree of the root and the root has value 23. And any node in the left subtree has to 

be smaller than the value at the root. And if we push 23 up the tree to the root then there is 

conflict between 23 and 34. 

Can we therefore push 51 to the root? We cannot shift 51 up to the root, because there is conflict 

between 51 and 48. Again 48 lies in the right subtree of the node which contains the value 51. 

And according to the search tree property, 48 has to be greater than 51, but 48 is smaller than 51. 

So there is a conflict again. 
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How do we resolve this conflict. As we saw earlier we cannot blindly push x or z up this tree.  

The solution is to move up a value to the root that is larger than the left subtree  and smaller than 

the right subtree, which means either the maximum value in the left subtree, which will lies 

somewhere here, or the minimum value in the right subtree, which will lies somewhere here. So 

you should pick a value which lies somewhere inside t 2 and replace y with that or we can pick a 

value which lies somewhere within t three, the smallest value in t three and replace y with that.  
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To consider the same example again, suppose we want to delete  41 from this tree. We remove 

41, and we find the maximum value in the left subtree which is  34, and we move 34 up to the 

root, but now this leaves the hole at the position where 34 was. 
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One can argue that 34 cannot have a right subtree. If 34 had a right subtree then there would be a 

value that is larger than 34 in the left subtree of the original tree, therefore 34 will not have a 

right subtree, can only have a left subtree. We can push the left subtree up to occupy the place of 

34. In this case, the left subtree consists of a single node 33, so we move 33 up to occupy 34 th 

positions. 
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So here is how we delete the maximum value. Keep going right till you reach a node whose right 

subtree is empty. From x, we keep going right till we see y here and then we see a z here, whose 

right subtree is empty. At this point, we know that we have found the maximum value in the tree, 

whose root is x. Now we remove this node. Since it does not have a right subtree, we do not need 

to worry about that. We just push t z in the place of z, this is how we delete the maximum value 

of a tree. 
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Here is the code, deletemax is a function whose signature is Ord a implies STree a arrow the pair 

a comma STree a. Deletemax as you see returns both the maximum value of the tree as well as 

the modified tree after having deleted the maximum value. There are two cases to consider. 

Deletemax of node t l x nil is the first case, this is the case where we are already at the right most 

node then the node x is the maximum value, so we written x and we have to written the modified 

tree after deleting x. In this case, x is the root, we have deleted x, there is nothing to do, so t l is 

the tree that we get after deleting x. The other case is when there is a non null right subtree. 

Deletemax of node t l x t r, where t r is the right subtree which is not equal to nil is y comma 

node t l x t y where y is the maximum value in t r and t y is the tree that you get after deleting y 

from t r. So deletemax of node t l x t r is the pair y comma node t l x t y, where y comma t y 

equals deletemax of t r. 
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And define how to delete largest value in a subtree, let’s return to the original task which was to 

delete an element from a tree. Delete is a function whose signature is Ord a implies STree a 

arrow a arrow STree a. Delete nil V equals nil. If you want to delete V from the empty tree, you 

do not have to do anything. Delete node t l x t r v, this is a un trivial tree. In case, V is smaller 

than x, then you delete V from t l from the left subtree; so in case, V is smaller than x, the result 

is node of delete t l V x t r. In case V is larger than x, the result is node t l x delete t r v. 

Otherwise this is the case when V is equal to x; if t l is the empty list, if the empty tree, then you 



have a tree whose root is x, whose right subtree is t r and whose left subtree is empty and you are 

deleting x, there is nothing to do, you just written t r. 

Else you have a tree, where x is the ah root, right subtree is t r and left subtree is t l, you delete 

the maximum from t l and that will give you y comma t y. The maximum element is y, t y is the 

tree that after deleting y from t l; and the new tree that you form is nothing but node t y y t r.  

Recall that our strategy is to find the maximum element in the left subtree and replace x by that 

value, so y is the maximum element in the left subtree, we replace x by y. So y becomes the new 

root, t y is the new left subtree and t r is the right subtree as usual. Again in the worst case, this 

code runs in time proportional to the height of the tree.  
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Here are some other useful functions. MakeTree which makes a tree from a list of elements; the 

signature is Ord a implies list a arrow STree a. MakeTree is nothing but foldl insert nil. Recall 

that foldl is the function that takes a function as the first argument, an initial value as the second 

argument and then applies this function repeatedly on list that is given as input by using this is an 

initial value. So the initial value that we give as the empty denoted by nil. So what this will do is 

it will first insert the first element of the list into the empty tree. Then it will insert the second 

element of the list into the resulting tree, the element the third element into that tree etcetera. So 



this will achieve the effect of inserting all the elements in the given list into the tree, into the 

empty tree, so it forms the tree with all these elements. 

Inorder is another useful function. Inorder of nil is nothing but empty list. Inorder of node t l x t r 

is to recursively print inorder the left subtree and then print the root and then print inorder the 

right subtree. This is called inorder, because the root is placed in between the inorder of the left 

subtree and inorder of the right subtree. You can observe that inorder t prints out the value in the 

tree t in ascending order. And therefore, one way to sort a list of integers or a list of any ah 

values of type Ord a is to makeTree with that list and then apply the function inorder on the tree, 

which we define as inorder dot makeTree. The dot syntax in Haskell allows to compose two 

function. So sort is the composition of inorder and makeTree. 
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So in summary binary search trees can be used to store a set of elements and support the 

operations insert, delete and search. It’s the fundamental data structure that is widely studied. 

Insert, delete and search takes time proportional to the height of the tree. But the height of the 

tree can be as large as the number of nodes in a tree. So we will see how to improve this in the 

next lecture.  


