Functional Programming in Haskell
Prof. Madhavan Mukund and S. P. Suresh
Chennai Mathematical Institute

Module # 06
Lecture — 01
Recursive Data Types

Welcome to week 6 of the NPTEL course on Functional Programming in Haskell. In this

lecture, we shall be introducing Recursive Data Types.

(Refer Slide Time: 00:11)

Recursive data types

* Just like we have recursive functions, we can have
recursive data types

* Arecursive datatype T is one which has some
components of the same type T

* Some constructors of a recursive data type T have
T among the input types, as well as the return type

Just like we have a recursive functions in Haskell, we can also have recursive data types.
A recursive data type T is one which has some components that are of the same type T,
this means that some constructors of a recursive data type T have T among the input

types as well as the return type of course.

(Refer Slide Time: 00:35)

First example: Nat

* Simplest example is Nat
* data Nat = Zero | Succ Nat
* Zero :: Nat

* Succ :: Nat -> Nat

Here is a simple example of a recursive data type that of natural numbers. We know that
Haskell offers a built-in type of int, integers, etcetera, but these represent both positive as
well as negative numbers. In this example, we want to represent the non negative
numbers that is O, 1, 2, 3, etcetera; here is how we could do it. Data Nat equals zero OR
successor Nat, this is the data declaration. We see that Nat is the type constructor or the

name of the type and zero and successor are the value constructors.

Zero is a value constructor that takes no argument at all whereas, successor is a value
constructor that takes a natural number as a argument or an object of type Nat as a
argument and returns an object of type Nat. As you can see, zero is a type Nat; successor

is a function from Nat to Nat.

(Refer Slide Time: 01:47)

Nat

* iszero :: Nat -> Bool
1szero Zero = True
iszero (Succ _) = False

pred :: Nat -> Nat
pred Zero = Zero
pred (Succ n) = n

We could now define functions on the type Nat by using pattern matching as usual. For
instance, here is a function that checks whether an object of type Nat is zero or not,
iszero is the function from Nat to Bool, iszero of zero is true, iszero of successor of
anything is false. Here is a function that computes the predecessor of a natural number,
by convention the predecessor of zero is taken to be zero, since we do not allow non
negative numbers. So, pred is a function from Nat to Nat, pred of zero equal zero, pred of

successor of n equals n, we could have other similar definitions.

(Refer Slide Time: 02:37)

Nat

* plus :: Nat -> Nat -> Nat
plus m Zero = m
plus m (Succ n) = Succ (plus m n)

e mult :: Nat -> Nat -> Nat
mult m Zero = Zero
mult m (Succ n) = plus ((mult m n) m)

For instance, here is a definition of the plus function which takes two Nat as inputs and
produces a Nat as an output. This function is defined as recursion plus m zero equals m,
plus m successor of n equals successor plus m n. Recall that plus m n returns a Nat, as a
result and successor precall is the constructor that takes a Nat and produces a Nat. So,

successor plus m n produces an object of type Nat.

Here is the multiplication function defined recursively, mult m zero equal zero, mult m
successor of n equals plus of mult m n and m. This is just saying that m times n plus 1 is

the same as m times n plus m.

(Refer Slide Time: 03:31)

Second example: L1st

* Recursive data types can also be polymorphic
* List a = N1l | Cons a (List a)

* This is the built-in type [a]

Here is a second example, another simple example of a recursive data type. This is the
example of list, this example also shows that recursive data types can be polymorphic.
Here is the data declaration, data list a equals Nil OR Cons a list a. Recall again, that Nil
and Cons are the value constructors and list is the type constructers. This is just the built-
in type list a, that is provided by Haskell, but we are providing this definition just as an

example.

(Refer Slide Time: 04:12)

List

* Functions are defined as usual using pattern matching

* head :: List a -> a
head (Cons x _) = X

* This causes an exception on head Nil
* You can have your preferred behaviour

* head :: List a -> Maybe a
head Nil = Nothing
head (Cons x _.) = Just x

The functions are defined as usual using pattern matching, head is a function that takes a
list of type a as input and produces an object of type a as output, head of Cons x anything
is X. Notice that this function fails when you invoke head on the list Nil, this causes an
exception on head Nil, you can now your own preferred behavior. For an instance, head
is a function from list a to maybe a, head Nil equals nothing instead of not providing any

definition for head Nil, you define head Nil to be nothing and you define head of Cons x

anything to be just x.

(Refer Slide Time: 05:02)

Binary trees

* A binary tree data structure is defined as follows:

* The empty tree is a binary tree

* A node containing an element with left and right

subtrees is a binary tree

* data BTree a = Empty

| Node (BTree a) a (BTree a)

Here, is a third and may be more challenging example that of binary trees. A binary tree
data structure is defined as follows, the empty tree is a binary tree and a node containing
an element with left and right sub tree is also a binary tree. So, the definition is as
follows, data BTree a equals Empty OR Node BTree a, a an another argument which is a
BTree a. So, again recall that Empty is a function which does not take any inputs and
whose output is an object of type BTree a. Node is a function with type signature BTree

a arrow a arrow b tree a arrow BTree a, which is the tree that is returned.

(Refer Slide Time: 05:54)

Binary trees

* Empty :: BTree a
Node :: BTree a -> a -> BTree a
-> BTree a

* Node (Node Empty 2 Empty) 3
(Node Empty 5 Empty)

* Node (Node Empty 4 Empty) 6
(Node (Node Empty 2 Empty) 3
(Node Empty 5 Empty))

Now, that is explained here, Empty is a function with type BTree a, Node is a function of
type BTree a arrow a arrow BTree a arrow BTree a. Here is an example of a binary tree,
node of a left sub tree and the node, the value of the node is 3 and there is a right sub
tree. The left sub tree is recursively given by Node and a left sub tree of it and here is the
value at the root of the left sub tree, which is 2 and here is the right sub tree of the left

sub tree.

In this case, the left sub tree here and the right sub tree here are empty; similarly the right
sub tree of the bigger tree with the root 3 is node empty 5 empty. Here is another
example, node of some left sub tree which is given by node empty 4 empty and the root
IS 6 and the right sub tree itself is a non trivial tree. Node of some left sub tree and the

root value being 3 and it is right sub tree being node empty 5 empty.

(Refer Slide Time: 07:09)

Binary trees

* Node (Node Empty 2 Empty) 3
(Node Empty 5 Empty)
3

This tree would be defined as this, node of node empty 2 empty which defines this left
sub tree, 3 which defines the root; node empty 5 empty, which defines this right sub tree

which consists only of a single node.

(Refer Slide Time: 07:33)

Binary trees

* Node (Node Empty 4 Empty) 6
(Node (Node Empty 2 Empty) 3
(Node Empty 5 Empty))
6

P <
w

Here is an another example, you have a binary tree with 6 as root, 4 as the only node in
the left sub tree and the right sub tree consisting of 3 as the root, 2 as the only node it is

left sub tree and 5 as the only node in it is right sub tree. This would be defined as

follows, node of node empty 4 empty, 6 node of node empty 2 empty, 3 node empty 5

empty, the structure should be fairly simple now.

(Refer Slide Time: 08:07)

Binary trees

4

1 3

*» Node (Node (Node Empty 1 Empty) 2
(Node Empty 3 Empty))

(Node Empty 5 Empty)

Here is an another example, this tree is node of a fairly large left sub tree, a non trivial
left sub tree and the root value being 4, which is declared here and a right sub tree which
has only a single node. The right sub tree is node empty 5 empty, the left sub tree itself is
a tree which is of the form node 2 and a left sub tree which says node empty 1 empty and
a right sub tree which says node empty 3 empty. This is how you represent binary trees.

(Refer Slide Time: 08:48)

Functions on binary trees

* size - Number of nodes in a tree

¢+ s1ze :: BTree a -> Int
size Empty = 0
size (Node tl x tr) = size tl + %
+ size tr

Now, you can define functions on binary trees as usual by using pattern matching. Here
is the simple function on binary trees, the function size which returns the number of
nodes in a tree. Size is a function with signature BTree a arrow Int, size of Empty equals
0, size of Node t I x tr, t | represents the left sub tree, t r represents the right sub tree, x
denotes the value at the node equals just the size of the left sub tree plus 1, because the

root is also a node plus the size of the right sub tree.

(Refer Slide Time: 09:36)

Functions on binary trees

* height - Longest path from root to leaf

* height :: BTree a -> Int
height Empty = @
height (Node tl x tr) =1 +
max (height tl) Cheight tr)

Here is another simple function on binary trees, height which gives the longest path from
root to leaf. Height is a function with signature Btree a arrow Int, height of Empty equals
0, because there are no nodes at all, the root is the same as the leaf. Height of Node t I x t
r equals 1 plus max of height t | and height t r. If the left sub tree had a height 4 and the
right sub tree had height 3, then the tree itself would have height 5, because 5 is 1 plus

max of 4, 3.

(Refer Slide Time: 10:20)

reflect - Reflect the tree on the “vertical axis”

Here is a function which reflects the tree on the vertical axis, for instance you start out
with 4, left sub tree having 2, 1, 3; right sub tree having just the node 5. If you reflect it,
the left sub tree will no have a single node 5 and the right sub tree will have the

reflection of the left sub tree here. So, you will get 2, 3, 1 instead of 2, 1, 3.

(Refer Slide Time: 10:51)

Functions on binary trees

* reflect - Reflect the tree on the “vertical axis”

» reflect :: BTree a -> BTree a
height Empty = Empty
height (Node tl1 x tr) = Node
(reflect tr)
X
(reflect tl)

How would you define this? Reflect a function of signature BRree a arrow BTree a,

reflect of Empty equals Empty, reflect of Node t | x t r is Node reflect t r x reflect t |.

Notice that you form the node with the reflection of the right sub tree on the left and the

reflection of the left sub tree on the right.

(Refer Slide Time: 11:18)

Functions on binary trees

4

1 3

+ levels - List nodes level by level, and from left to

right within each leve

* levels of the above tree - [4,2,5,1,3]

Here is another function, we want to list all the nodes in a tree level by level and from
left to right within each level. So, in this tree there are three levels, this is one level, this
is another level and this is the third level and you want to list elements from the first
level and then, from the second level and then from the third level and within each level
from left to right. So, levels on the above tree would yield 4, 2,5, 1, 3.

(Refer Slide Time: 11.56)

Functions on binary trees

* levels t = concat (myLevels t)

» myLevels :: BTree a -> [[a]]
myLevels Empty = []
myLevels (Node t1 x t2) = [x]:

join (myLevels t1)
(myLevels tZ)

So, levels is a function which has signature BTree a arrow list a and it is defined as
follows, levels t equals concat of myLevels t. Recall that the concat function takes a list
of lists of type a and produces a list of type a, so myLevels t have to be a function that
returns a list of list of type a, myLewvels is a function with signature BTree a arrow list of
list of a. This list is suppose to represent, the first list in this list represents all the nodes
in the first level, the second list inside this list represents all the nodes in the second

level, etcetera.

So, myLevels of Empty is nothing but, the empty list because there are no levels in an
empty tree, myLevels of Node t 1 x t 2 is the list that you get by depending the list
containing X, because x is the only node in the top level. So, the list consisting of x
should be the first list in this list of lists and following that, you have bunch of lists that
you get from myLewvels t 1 and you have a bunch of lists that you get from myLevels t 2,
you join the lists at the appropriate levels, so join. So, the definition of myLevels node t

1xt2is the list consisting of x coming in front of join of myLevels t1 mylLewvels t 2.

(Refer Slide Time: 13:56)

Functions on binary trees

¢ join :: [[a]] -> [[a]] -> [[a]]

join [] yss = YSS

join xss [] = XSS

join (xs:xss) (ys:yss) = (XS ++ ys):
join XSS yss

The code for join is given here, join is a function which has signature list of list of a
arrow list of list of a arrow list of list of a. Now, the function join is very similar to zip
with of plus plus applied to xss and yss, but there is a slide difference in this case. So, let
us look at the definition in a bit more detail, join of empty list yss equals yss; in the case

of zip with this would have been empty list; join of xss empty list equals xss.

These two cases represent the situations, where the left sub tree has fewer levels than the
right sub tree and this represents the case where the left sub tree has more levels than the
right sub tree. Now, join of xs followed by xss and ys followed by yss is just xs plus plus

ys coming in front of join of xss and yss, so this completes the definition of levels.

(Refer Slide Time: 15:12)

Showing trees

* data BTree a = Empty
| Node (BTree a) a (BTree a)
deriving (Eq, Show)

+ Default show of trees is very hard to parse

* show (Node (Node Empty 2 Empty) 3 (Node
Empty 5 Empty)) = "Node (Node Empty 2
Empty) 3 (Node Empty:i5 Empty)"

Let us look at how we can display trees, so a simple way of displaying tree is to say
deriving equality and show, is to say deriving show in the data type declaration. But, the
default show method on trees is very hard to parse, for instance show of this complicated
tree is just the same representation given inside codes. As you can see, this is not very

easy to read.

(Refer Slide Time: 15:52)

A prettier show

W, sk o 4
* We want a better layout

« treel = Node (Node Nil 4 Nil) 6 (Node (Node Nil
2 Nil) 3 (Node Nil S Nil))

* Typing treel in ghci should give us (each node on a line

and 2n spaces before each node at level n)
[
o]

4

2

J

g

We may want a prettier show with a better layout, for instance suppose we define treel
to be this tree, node with a root 6 and left sub tree consisting of a single node 4 and right
sub tree consisting of a root 3 with left child 2 and right child 5. Then, typing treel in
ghci should give us this, this is the decided behavior that we want. In this, we see that
each node is printed on a line, is printed on a line and there are 2 n spaces before each

node at level n.

Here are assuming that the root is in level 0. So, 4 and 3 which are nodes at level 2 have
two spaces before them and 2 and 5 which are nodes at level 3 have four spaces before
them. And this node makes the structural of the tree clear, 6 is the root with two children

4 and 3, 4 does not have any children, whereas 3 has children 2 and 5.

(Refer Slide Time: 17:07)

A prettier show

You can see that the printed layout mirrors the structure of the tree and makes it pretty
clear, 6 is the root, 4 and 3 are the children, 4 does not have any children, 3 has two

children 2 and 5.

(Refer Slide Time: 17:27)

A prettier show

Here is another tree, 4 with left sub tree consisting of 2, 1 and 3 and the right sub tree
being a single node 5. We want this to be layout in this fashion, 4 with two children 2
and 5 and the children of 2 immediately displayed on the lines following 2, 1 and 3 and 5

would displayed after that. But, you can look at which column 5 appears in and

determine whose child it is, 5 is the child of 4 because 5 appears in column 3, whereas 4

appears in column 4.

(Refer Slide Time: 18:07)

A prettier show

o

Here is another tree, it is a tree with root 6, left sub tree consisting of a single node 4,
right sub having a node 3 whose left child is 2 and whose right child is 5. This is the
layout as follows, 6 followed by it is two children 4 and 3, followed by it is left child
which is 2 whose children are displayed here as star and 5, this is because this node has
only one child and the other child is empty and we use star to denote which child is

empty, in case there is only one child.

In case both child’s are empty as in the example of this node 4, we do not display
anything. But, if one sub tree is empty and the other sub tree is non empty, then we
display a star corresponding to the sub tree that is empty. So, 2 has left sub tree which is
the empty and right sub which consists of a single node 5 and 3 itself has this is the left
sub tree, 2 star 5 and it is right sub tree is empty which is denoted by star. Now, how do

we define this show function?

(Refer Slide Time: 19:23)

A prettier show

* instance (Show a) => Show (BTree a)
where
show t = drawTree t ""

* drawTree :: (Show a) => BTree a ->
: String -> String
drawTree Empty spaces = spaces ++ "*\n"

We defined it as follows using the instant declaration, instance Show a implies Show
BTree of a, where Show t, t is the tree here, it just drawTree t empty string. DrawTree
will draw the layout of the tree, where the second parameter which is the string tells how
may spaces to insert before drawing the current sub tree. So, drawTree is a function with
signature Show a implies BTree a arrow string arrow string, this string is the number of
spaces that have to be return displayed before the current sub tree is displayed and this
string is actually the output, the layout of the tree.

DrawTree empty, this is the empty tree spaces equals spaces plus plus star back slash and
which denotes the new line character. You see that you will encounter this case only

when this is the sole empty sub tree of a node.

(Refer Slide Time: 20:47)

A prettier show

* instance (Show a) => Show (BTree a) where
show t = drawTree t ""

¢ drawTree (Node Nil x Nil) spaces

= spaces ++ show x ++ "\n"
drawTree (Node t1 x tr) spaces
= spaces++ show x ++ "\n"
++ drawTree t1 (' ':' ':spaces)
++ drawTree tr (' ':' ':spaces)

The other cases when you have a node x both of whose sub trees are empty, Node Nil x
Nil, drawTree of Node Nil x Nil spaces is nothing but, spaces plus plus show x plus plus
new line. DrawTree of Node t | x t r, where t | is the left sub tree and t r is the right sub
tree spaces is nothing but, spaces plus plus show x plus plus new line. Remember that we
always add this much, this many spaces before displaying the current sub tree, plus you

append that with drawTree of t I.

But, when you draw the left sub tree you have to add two more spaces, so which you do
by adding two spaces from the beginning of this list. And then, you concat that with
drawTree of t r which is the right sub tree, again giving two spaces adding two more

spaces in the beginning of laying out the right sub tree.

(Refer Slide Time: 21:58)

Summary

* Recursive datatypes are an important concept in
Haskell

* Arecursive datatype T is one which has some
components of the same type T

* Two canonical and important examples of
recursive datatypes -- Lists and trees

Since summary, recursive data types have been introduced in this lecture, they are a very
important concept in Haskell. A recursive data type T is one which has some of it is
components of the same type T and we have seen two canonical and important examples

of recursive data types, list and trees. In the next lecture, we will see more on trees.

