
Functional Programming in Haskell 

Prof. Madhavan Mukund & S.P Suresh 

Chennai Mathematical Institute 

 

Module # 05 

Lecture - 01 

User Defined Data Types 

 

Welcome to week 5 of the NPTEL course on Functional Programming in Haskell. 

(Refer Slide Time: 00:19) 

 

I am S.P. Suresh and I shall be taking over from Professor Madhavan Mukund for the 

next few weeks. In today's lecture, we shall be looking at user defined data types in 

Haskell. The simplest way to define new data types in Haskell is the so called 

enumerated data types, here is an example delta bool equals false or true. You define the 

new data type using the data keyword and give the name of the type here bool. 

Notice the capitalization and then, you enumerate all the values that in the part of the 

type, in this case it is either false or true, notice the capitalization again. Another example 

is day, you declare it by saying data day equals Sunday or Monday or Tuesday or 

Wednesday or Thursday or Friday or Saturday. These are all the possible values of the 

type day. 



(Refer Slide Time: 01:15) 

 

Here is the another example, data shape equals either a circle or a square or a rectangle, 

but a circle has a parameter namely the radius and a square comes with the parameter, 

namely the length of the side. Similarly, a rectangle also has a parameter namely the 

length and breadth. This enables us to declare new data types, which can take infinitely 

many values, you have circle 1, circle 2.0 or circle 3.0 and so on, one circle objects for 

every float value. Here are some examples, circle 5.0, square 4.0, rectangle 3.0, 4.0; 

these are rectangle with breadth 3 and length 4. 

(Refer Slide Time: 02:15) 

 

You can define functions on user defined data types in the usual manner, here are some 

example functions defined using pattern matching. For instance, you can define what a 



weekend is. Weekend is a function from day to bool and here is the definition, weekend 

of Saturday is true, weekend of Sunday is true and weekend of anything else is false. 

Similarly, you can define an area function, which is a function from shape to float, area 

of a circle with radius r is pi r squared, area of a square with length of square x is x 

squared and area of rectangle with length l and width w is l times w. Or there is other 

ways to define functions on user defined data types, yes. 

(Refer Slide Time: 03:11) 

 

For instance, here is another way to define the weekend function called weekend2, the 

definition is here. Weekend2 of d is true if d is equal to Saturday or d is equal to Sunday 

and it is equal to false otherwise. But, if you enter this program as it is in ghci, you will 

get an error, the error message will be something like this. No instance for Eq Day 

arising from a use of the equality operator; let us see how to fix this later. 



(Refer Slide Time: 03:49) 

 

Here is another function you can write, which is a function from day to day, it gives the 

nextday. For instance, nextday of Sunday equals Monday, nextday of Monday equals 

Tuesday and so on, nextday or Saturday equals Sunday. Now, if you load this function in 

ghci and invoke nextday of Friday, it will again lead to an error and it is the following 

error. No instance for show day arising from a use of print, we will see what this means 

and how to fix this in a later slide. 

(Refer Slide Time: 04:26) 

 

To check equality of two values of a data type a, a must be declared to belong to the type 

class Eq. We have seen the notion of a type class in earlier lectures and we have also seen 

the type class Eq in detail. So, to get weekday2 to work we need to add Day to the type 



class Eq and we add Day to the type class Eq as follows, data Day equals Sunday or 

Monday or Tuesday or Wednesday or Friday or Thursday or Saturday deriving Eq, the 

keyword is derived. 

When we declare Day to derive from equality, the equality operator has the default 

behavior. Sunday equals Sunday, Tuesday is not equal to Friday, Monday equals 

Monday, etcetera. Once you declare Day to be deriving from equality, then weekday2 

compiles without error. 

(Refer Slide Time: 05:32) 

 

To make the next day work, we must make day an instance of the type class called Show 

with a capital S. We have to declare it as follows, data Day equals Sunday, Monday or 

Tuesday, etcetera deriving Eq comma Show. The type class Show consists of all data 

types that implement the function show with a small s. 



(Refer Slide Time: 05:59) 

 

The function show converts it is input to a string which can be printed on the screen, we 

need not define it explicitly for the data type Day. If we do not given an explicit 

definition, there is a default definition that Haskell provides, which is just to give a 

default text representation for the data value. For instance, show Wed is just the string 

Wed, we can also derive Day as an instance of the type class O r d, Ord which is an 

ordinal type. 

When we do this, an order is defined on the data type Day as follows, Sunday is less than 

Monday is less than Tuesday etcetera is less than Saturday and this order is determined 

by the order in which the data values are enumerated in the data type declaration. 

(Refer Slide Time: 07:01) 

 



We can also derive shape to belong to various classes, we consider data Shape equals 

circle float or square float or rectangle float, float deriving Eq, Ord and Show. Now, you 

can use all these functions on data on values of type Shape. For instance, Show circle 5.0 

will just be the string that say circle 5.0, square 4.0 is equal to square 4.0, the equality 

check is derived from the equality on floating point numbers as well as the names, square 

or circle or rectangle. 

For instance, square 4.0 is equal to square 4.0, because both the parameters and the name 

here are equal, square 4.0 is not equal to square 3.0. Because, even though the names are 

equal the parameters are different, circle 5.0 is not equal to rectangle 3.0, 4.0, because 

there are two different types of shape, one is a circle and other is a rectangle and we have 

also derived it to belong to the type class Ord. So, there is an order defined on shapes, 

square 4.0 is for instance greater than circle 5.0, because square comes later in the 

declaration than circle. 

(Refer Slide Time: 08:37) 

 

The names square, circle, Sunday, Monday, etcetera that we have used are called 

constructors. They are nothing but, functions; Sunday for instance is a function that is of 

type Day. It is a function that accepts no input, but produces an output. Rectangle is a 

function with two parameters, so it takes two floats as an inputs and it produces a shape 

as output. So, rectangle is a function whose type is float arrow float arrow shape, 

similarly circle is a function whose type is float arrow shape. 



(Refer Slide Time: 09:21) 

 

These constructors can be used just like any other function, for instance circle can be 

invoked on the input 5.0 to give a shape. You can map the circle function over a list of 

floats to get a list of shapes. For instance, map circle on the list 3.0 and 2.0 will give you 

the list consisting of circle 3.0 and circle 2.0. 

(Refer Slide Time: 09:49) 

 

Here is another way of defining types, data Person equals Person String Int Float String. 

Now, you will see two occurrences of the word person here, one on the left one on the 

right. On the left, it denotes the name of the type; on the right it is the name of the 

constructor. Now, unlike in a type like shape where we had three constructors circle, 

square, rectangle, here we have only one constructor, though we have many parameters. 



The convention in Haskell is that, if a data type has only one constructor then you use the 

same name for both the type and the constructor. So, the person that appears on the right 

is a constructor and the person that appears on the left is the name of the data type. So, 

here we say that data Person equals person string int float string, the intention is that the 

first string is the name of the person, this int here is the age of the person, the float here 

is let us say the height of the person and the last string here is the phone number. 

So, for instance I might say guy equals person alpha 21, 5.8 and some phone number. 

How do you extract the name of a person object? You write a function name, whose 

input is person and the output is string and the definition is this. Name, person n, any 

age, any height and any phone number equals n, here is a function that extracts the age of 

a person, age is a function from person to int and the definition is age, person, anything 

a, anything, anything equals a. 

(Refer Slide Time: 11:45) 

 

You can write a height function which says height person anything, anything h, anything 

is height, is h and here is a function that excepts phone number of a person; phone, 

person, anything, anything, anything p equals p. There is a pattern matching and there is 

a do not care patterns in all these definitions, but this kind of definition is quite 

combustion. So, Haskell offers an alternative easier syntax which is also familiar from 

other languages. 



(Refer Slide Time: 12:21) 

 

You can define the person type as for this, data Person equals person and within braces 

you say name which is of type string, age which is of type int, height which is of type 

float and phone which is of type string. So, you are naming all the fields directly in the 

data definition itself and these names here, name, age, height, phone etcetera are really 

nothing but, the functions that we defined earlier. Name is a function from person to 

string, age is a function from person to int. 

You declare new objects of type person in this syntax as follows, guy equals person, 

within braces you say name equals alpha, age equals 21, height equals 5.8 and phone 

equals phone number. This is an easier syntax that Haskell offers. 

(Refer Slide Time: 13:24) 

 



To summarize, if we seen simple ways of defining new data types, the keyword data is 

used to declare new data types. The key word deriving is used to derive the data type as 

an instance of a type class and typically, the standard functions that are supposed to be 

defined on types of the type class are defined to be default. For instance equality, order, 

show etcetera, then you can also define data types with parameters as in the example of 

shape, person, etcetera. 

You have two different types of user defined data types, one you might called the sum 

type or union type, where there are multiple constructors on the right. The example here 

is Day or Shape or the other is the product type or the struct type that you might be 

familiar from other languages, where you have only one constructor on the right, the 

example of this is a Person. 


