
Functional Programming in Haskell 

Prof. Madhavan Mukund & S.P Suresh 

Chennai Mathematical Institute 

 

Module # 04 

Lecture – 05 

Defining functions within ghci 

(Refer Slide Time: 00:03) 

 

So, in an earlier lecture in the first week, we introduce the interpreter ghci. We said that 

we cannot define new functions directly in ghci, unlike say in python and you must 

create a separate Haskell file with extension dot hs and load it into ghci. We turns out 

that this is not entirely accurate. 



(Refer Slide Time: 00:24) 

 

So, in order to use functions, definitions in ghci we need to learn a little bit more about 

Haskell. So, we have seen the use of the word where in order to specify local definitions 

and functions. So, we can define a function in terms of some local definition and use 

these definitions in the function. An equivalent way of doing this is to use an expression 

called let. So, we can instead of using where, we can say let diff x be x 2 minus x 1, diff 

y be y 2 minus y 1 in this definition. So, these are seemingly two equivalent ways to 

write it, we have looked at where so far, we have not seen let. 

(Refer Slide Time: 01:10) 

 



So, let something, in something is a Haskell expression, is like if something, then 

something, else something which is also Haskell expression. It can be used wherever an 

expression is allowed, at a level it which we are using Haskell, there is no significant 

difference between let and where, which is why we are used where so far. The distinction 

is minor for us, but actually because let is a full fledged Haskell expression and where is 

not. 

They are not equivalent in more complicated context as we may see when we go along. 

If you are curious, you can look up this link to find out some ways in which let differs 

somewhere. 

(Refer Slide Time: 01:49) 

 

And this moment what is relevant for us is, that we can use let inside ghci to define 

functions on the fly. At a basic level we can use let to define single line values, so we can 

write something like let square of x equal to x square x and now square will be available 

within ghci. So, therefore, it is definitely possible to actually define functions indirectly 

in ghci and not exactly the way you do it outside in a Haskell file, but we are using let. 

Of course, this is a single line definition. What if we want is a multiple line definition, 

like say factorial which is defined separately for 0 and 1. So, we can use this notation 

colon open brace and colon close brace to enclose a multiple line definition. So, if we 

say colon open brace, notice that you will find a slide change in the path ghci which is 

greater than in, will give you something else perhaps a type, symbol like this. 



Until you put a close brace and then the next line will put term back to the usual form 

and in between, you can write a multiple line that let for example, we can say something 

like, let fact int to int. Be the function your fact of n, if n is less than 1 is 1 otherwise, it is 

n times fact n minus 1. 

(Refer Slide Time: 03:08) 

 

So, here let us actually do this to verify that this words. So, we say ghci, then we can say 

let square x equal to x star x or we x square of 8 for instance, we get 64. We say square 

of 16 we get 256 and so on. Now, we want a multi line definition, we can think prompt 

changes. Now, we can say let fact int to int be given by fact n, such that n is less than 1 is 

equal to 1 otherwise, it is equal to n times fact of n minus 1 and then, we close this multi 

line definition, we get back to whole funct. 

Now, we say, what is factorial of 7, to get 5040, we say what is factorial of minus 2, we 

get 1 and so on. So, we can use let with the open brace close brace if necessary to define 

functions in ghci indirectly, not exactly the same way we do it in the Haskell file if we 

source through the load function. But, effectively we can write functions on the fly. 



(Refer Slide Time: 04:21) 

 

So, to summarize we cannot directly define functions within ghci unlike python, in 

python this same def command which is used to define functions in a file, is exactly what 

we use in the interpreter. In Haskell, you have to use let perhaps with this multi line 

colon open brace, colon close brace and I would like to thank Oleg Tsybulskyi from 

Odessa for pointing this out on the discussion for us. 


