
Function programming in Haskell 

Prof. Madhavan Mukund and S. P. Suresh 

Chennai Mathematical Institute 

 

Module # 04 

Lecture – 01 

Measuring efficiency 

Whenever, we write a program to solve a given task, we need to know how much 

resources it requires, how much space and how much time. Here we will focus and how 

to compute the amount of time required by a Haskell program. 

(Refer Slide Time: 00:17) 

 

Remember that the notion of computation in Haskell is rewriting or reduction, in other 

words we take function definitions and when we use them to simplify expressions by 

replacing the left hand side of defining by it is right hand side. In this way we keep 

applying these rewriting rules and till no for the simplification is possible for the given 

expression. Hence it make sense to count the number of reductions steps and use this as a 

measure of the running time for Haskell program. 

Now, normally the running time of programs depends on the size of the input, it 

obviously takes more time to sort a large list than a small list. So, we typically express 



the running time as a function of the input size, if the input size is n, let us write T of n is 

the function is described, it depends of the time on the input size. 

(Refer Slide Time: 00:12) 

 

So, let us start with an example, here is the definition of the built in function plus, plus 

that combines to list into a single list, so the function is defined by induction on the first 

argument. So, if we combine the empty list with the list y, then we just get y itself, if we 

combine the non empty list with y, then we take the first element to the first list x and 

move it to be the first element of the inductively combined list x is plus plus y. 

So, let us execute this on an input such as 1, 2, 3 plus, plus 4, 5, 6. Since, the first list is 

non empty, the second definition implies and so we now have to append one to the result 

of 2, 3 plus, plus 4, 5, 6. Once again we apply the second definition, so inside the bracket 

now we have two appended to the list 3 plus, plus 4, 5, 6 once again we apply the second 

definition. So, we get the list three appended to the empty list plus, plus 4, 5, 6. 

Now the base case applies, so the empty list plus, plus 4, 5, 6 is just 4, 5, 6. So, we get 

the final answer which is 1 appended to 2 appended to 3 appended to the list, 4, 5, 6. So, 

from this it is clear that we execute plus, plus for each element in the first list we have to 

apply the second rule once. So, the second rule is used length of l 1 times and finally, 

when the length of l 1 becomes zero, we will apply the first rule once and this behavior is 

independent of the actual values of l 1 and l 2. We will always use the first rule length of 



l 1 times followed by one application, always uses the second rules length of l 1 times 

followed by one application of the first rule. 

(Refer Slide Time: 03:02) 

 

On the other hand, let us look at this function elem, which stands for element of, we 

checks if a given integer belongs to a list of integers. So, the base case is that the element 

i never belongs to the empty list and otherwise, we check whether it is the first element 

of the non empty list, if so it return true, if it is not so, we continue to search for the 

element in the reset of the x axis. Now, if we apply the element function to a list which 

does not contain the value, then the second class gets executed as many times as the 

length of the input until we reach the empty list and get false. 

So, we start with l of 3 of 4, 7, 8, 9 then in turn we strop of the 4, the 7th, 8th, the 9th 

until we get to left three of the empty list and then say false. On the other hand if you are 

lucky, we might find the element right away. For instance, if the first element of this list 

was not a 4, but a 3, then in one step we would find that the first element matches the 

pattern we looking for and we would turn through. So, in general the actual execute usual 

times of function on an input depends both on the input sides and the actual value of the 

input. 

When we executed plus, plus, we saw that the value of the input did not play any role, 

we would always execute the command, the second definition as many times is the 



length of the first list and then execute the first definition once. But, it most functions 

depending on what we past to the function the execution pay type less or no time. 

(Refer Slide Time: 04:40) 

 

So, to account for variation across the values of the inputs, the standard idea is to look at 

to the worst possible input, this is called the worst case capability. Now, this basically 

takes the maximum running time over all inputs are size n and defines this to be the 

worst case complexity of the function, this is perhaps the bid pessimistic, because the 

worst case made a clerked very rarely. But, on the other hand this is the only congregate 

case that we can typically analyze. 

It would often be nice if we could actually make some kind of statistical average and 

compute the average case. But, it many cases is difficult to define a standard distribution 

of probability across all inputs and compute a meaningful average. So, though the 

average case complexity is a more realistic measure of how long the function takes, 

which is either difficult or impossible to compute in general. So, we must unfortunately 

settle the worst case complexity. 



(Refer Slide Time: 05:42) 

 

The other feature that is usually use then analyzing algorithms is to use what is called a 

asymptotic complexity. So, we are interested in how T of n close as a function of n, but 

we are interested only in orders of magnitude, we are not really interested in exact details 

of the constants more. So, the standard way to express this, this to use this so called deep 

over notation. So, big over notation says that f n is no bigger than g n, in other words f n 

is dominated by some constant time g n for every n greater than 0. 

As an example, suppose we are the congregate function f of n as a quadric a and squared 

plus b n plus c. We claim that this is actually big over n squared for instance, supposing 

we take a concrete values such as 3 n squared plus 5 n plus 2 then we could take 3 plus 5 

plus 2 n say and this is always less than or equal to 10 n squared for all n greater than 0. 

So, if a and b and c or all positive then we can just add up the coefficients to come up 

with this value k. 

You can check that the when you of the cap coefficient is negative you can just stop it. 

So, you can just add up this sum of the positive coefficients that should work. So, usually 

it will ((Refer Time: 07:14)) which is just take the highest path. 



(Refer Slide Time: 07:16) 

 

So, usually ignore the constant factor, so we ignore constants like a, b and c and we take 

them among the terms a contributes to the complexly the highest power and we say that 

this function over n squared. So, given this we typically express the complexity of the 

function terms of functions like n log n for n to the power k for some k. So, these are the 

so called polynomial functions are we have exponential and so on. So, this is the typical 

notation that we will use to describe the complexity of our functions. 

(Refer Slide Time: 07:53) 

 



So, in this notation we saw that the complicity of plus, plus is O of n, when n is the 

length of the first list, the length of the second list is immaterial. Therefore, it really is 

the irrelevant as for as the input gives. On the other hand, for the function l n we again 

for a linear dependence O of n, but this is not true for all inputs, we saw that it could 

actually terminate in one step if the first element match is the length element we are 

looking for. So, this is really a case where we are applying this worst case definition in 

order to determine the complexity of the function. 

(Refer Slide Time: 08:32) 

 

So, let us try and analyze the complexity of function that we wrote earlier. So, this is our 

inductive definition of reverse, we set that we can reverse the empty list by just return in 

the empty list. On the other hand, if we have an non empty list then we pick the tail of 

the list, reverse if inductively and then append the first element of reverse. Now, 

unfortunately this append we know depends on the length of the tail. 

So, we could write to analyze is directly whole we could use the fact that we knows 

something about plus, plus to right what is called a recurrence, recurrence express is T of 

n in terms of smaller values of t. So, in this case if we have an empty list, if the list 

length is 0, so here this input size of the length of the list to be reverse. So, if the length 

is 0 then clearly we can reverse it in one step. Now, if the length is not zero then we have 

to first reverse the tail. 



So, this means that in order to reverse the length of list of length n we have to first 

reverse the list of length n minus 1 and then what we say in our first analysis was that 

this function plus, plus will take time propositional to n minus 1 at iterations of the 

second definition plus 1 iteration of the first definite and therefore, it will take n steps. 

So, this gives as the behavior of the time complexity of reverse in a recursive form. 

(Refer Slide Time: 10:08) 

 

So, how do we solve this kind of thing to get a an expression for T of n, well the easiest 

way is just to expand the recurrence. 

(Refer Slide Time: 10:17) 

 



So, here is a recurrence now says T of 0 as 1 and T of n is T of n minus 1 plus n. So, 

now, we start with T of n and using the second item of the recurrence we expanded does 

T of n minus 1 plus n. Now, intern we can apply the same definition T n minus 1 and get 

it as T of n minus 2 plus n minus 1. So, this is just expansion of this recurrence, where n 

is substitute we will firmly the n minus 1 in this way we keep expanding. 

And so we are building up this term over here n minus 2 plus n minus 1 plus n and we 

have what remains, eventually we come down to the point where n minus n which is 0 

comes to us and we have on the right if you check this will be n minus n minus 1 so 1, 2, 

3 and all that. So, this is the summation of i is equal to 1 to n of i and this is well known 

is n into n plus 1 by 2 and hence going by a earlier way of calculating will be go the 

highest terms of this is n squared by 2 plus n by 2. So, the highest term is n n squared and 

if we ignore all constant this turns out to be order n squared. In other words we are 

actually spending n square time in order to reverse the list of n elements with seems 

rather inefficient. 

(Refer Slide Time: 11:44) 

 

So, how do we improve on this? So, the idea is that we do not reverse the list in place as 

we are trying to do, but build up a second list. So, imagine that we have stack of this, so 

maybe we have a red book and blue book then a green book ((Refer Time: 12:06)). So, 

now, what we do is we move this book to a new stack. So, we now have a green book 

here and we have move green book here, then we move the red book on to this and now 



we have a red book here and no red book. Finally, we move the blue book from new 

stack, now we have a blue book on top and now notices in this second stack is the 

reverse are the first stack. 

(Refer Slide Time: 12:33) 

 

So, in other words we transfer to the new stack from top to bottom, in the new stack is 

the old attack in reverse order. So, we can use this idea to write a more efficient version 

of reverse. 

(Refer Slide Time: 12:46) 

 



So, here is the idea of moving a list from one side to another side and reverse. So, what 

we do is we transferred the contents of our first list to the second list. So, the first list is 

empty then there is nothing to transfer and just leave the second list as list, if the first list 

is non empty then this x is the book on top of the stack, so we move it to the top of the 

second stack. So, if we want to transfer x colon x s to l then we keep the x is in the first 

stack and move this x from the first stack to the second stack. 

So, now, it is clear that this function does not depend on the second list at this pass. So, 

this is the bit like plus plus. So, the input size is actually the length of l 1 and it is clear 

that we have recurrence of this form with says that if I have an empty list, then I do it in 

one step as a first argument, if I have a non empty list then it takes me one steps to 

produce then instance of transfer of size n minus 1. 

So, T n is T of n minus 1 plus 1 and now using our expansion we expand this n times we 

come down to T 0. So, we get 1 plus 1 plus 1 n plus 1 times and n plus 1 is just order of 

n, in other words as we clearly know from the way we describe the process manually 

transferring the list in reverse from one stack to another stack takes times propositional 

to the length of the list. 

(Refer Slide Time: 14:24) 

 

And now we are done, because we can just start with the empty second stack as we said 

before and transfer everything in the first stack to the second stack. So, we have a fast 

reverse which is recommended in terms of this linear function transfer and fast reverse of 



n is just transfer the Constance of n to the empty stack. The complexity of this function is 

linear, so notices that we have to take a look at how list are treated in ((Refer Time: 

14:53)) and how computation was in order to come up with the slightly non obvious 

definition of the reverse, which matches the intuitive complexity that we have for the 

function. So, the shows that you cannot blindly applied needs from one programming 

language to another without understanding the computation model, if you want to 

achieve the efficiency that you like. 

(Refer Slide Time: 15:16) 

 

To summaries we measure the complexity of the Haskell function in terms the number of 

reduction steps you take to arrive at the answer. So, reduction consist of applying the 

definition in the function and rewriting the left hand side by the right land side. Now, 

when we complexity of the function we have to account for the input size, but also for 

the input value, we say the function l m could return quickly or take a long time 

depending on whether not the value I looking for belongs to the list. 

So, to account for the input size and the value, we usually use worst case complexity, 

because the desirable goal of computing average case complexity it is very hard. And 

finally, we said that we will use traditional algorithmic ideas and express the efficiency 

in terms of asymptotic complexity. So, we will ignore the Constance ignore lower order 

terms and write T of n in terms of below of f of n, where f of n will typically the function 

like n or n log n or n to the power k or 2 to the power n. 


