
Functional Programming in Haskell 

Prof. Madhavan Mukund and S P Suresh 

Chennai Mathematical Institute 

 

Module # 03 

Lecture – 04 

List comprehension 

 

We have seen two important higher order functions on list map and filter and we also 

saw that filter and map are often used together in order to produce interesting 

transformations on a list. So, filter takes a list, applies a property and extracts, those 

elements which satisfy the property and map takes a list and applies a function to each 

element of a list. So, by combining map and filter, you can select some items from a list 

and then, transform only those items. So, today, we will look at a nice notation for doing 

this, which is much more readable, then let us writing map and filter. 

(Refer Slide Time: 00:37) 

 

So, we start with basic set theoretic notation. So, we have often seeing this kind of 

notation to describe a set. So, here it says take given a set capital L, take all elements 

from the L which satisfy some condition, in this case, they are even and square these 

elements. So, this is set of all X squared, such that X belongs to L and X is even. So, 

effectively this takes a given set L and produces a new set M. So, it transforms a given 

set to a new set and this is in set theory, this notation is called set comprehension. 



So, this is a technical term, so defining sets in this way is define to be using a techniques 

called set comprehension and so this is just terminology from set theory. So, analogues to 

this; Haskell allows us to define this using list comprehension. So, this notation with 

very similar to that, instead of a curly bracket we have a list square bracket and then, we 

have of course, the same vertical bar, which is the symbol from entire type on the 

keyboard and now, for the element of, we use thing which resembles elements of. 

So, remember we said that Haskell tries to use notation, which looks like what we use in 

real life. So, we use slash equal to or not equal to and now, we have already seen that, we 

use this minus and greater than, simulate the arrow for function. And now, we have less 

than and minus, which is supposed to represent the element. So, this says, for a take the 

elements in L, check if they are even. So, this is a filter and then, if they are even apply 

X square, so this is a map. 

(Refer Slide Time: 02:30) 

 

So, here is an example. So, supposing we want to find the divisor's of n, the divisor's of n 

or those numbers that divide n without leaving any reminder. So, the first of all, the first 

thing we notice the divisor's of n must be in the range 1 to n. So, we take all elements in 

the range 1 to n and if the remainder, when n is divided by that number is 0, so X divisor 

in exactly, then we listed. So, this list all the divisor's of n. 

So, if I take for example, divisor's of say 6, when I will first generate 1, 2, 3, 4, 5, 6 are 

the possible candidates and then, applying this condition, it will say that 6 divided by 1 is 

okay, 6 divided by 2 is okay, 6 divided by 3 is okay, because 6 mod 3 is 0, 6 divided by 4 



is not okay, 6 divided by 5 is not okay, 6 divided by 6 will be okay. So, exactly the 

numbers 1, 2, 3 and 6 will survive. 

(Refer Slide Time: 03:30) 

 

Now, using this function divisor's, we can classify whether a numbers prime or not. So, 

primes below a given number n. So, prime is a number, which is divisible by only itself 

and 1. So, if the number is prime, like a divisor's of 7, you will get a list consisting of 1 

and 7 and nothing else, because that is a definition of prime; that would be 2 integers 

divide the number, the number itself and 1, it has no other non-trivial factors. 

So, in order to check whether something is prime or not, we just check whether divisor's 

of X is exactly the list 1 comma X and then, we take all the numbers from 1 to n. Such 

that, this is true and we list them out, we get the price below the number in the range 1 to 

n, 2 to n. Because, notice that if I say 1, so 1 is not a prime, divisor's of 1 or the way we 

are defined it is going to be the list consisting of 1. 

So, it will failed this test, because it is not 1 comma 1, which is what this test requires, it 

requires divisor of X to be list 1 comma X. So, in order for 1 to be a prime would have to 

produce a list in divisor from 1 comma 1 that are functions divisor's will not do that, it 

will only check 1 number and produce that number. So, divisor's of 1, we just fill the list 

containing the single element 1. So, we are okay that 1 does not comma to the n, 2 on the 

other hand will get this divisor's 1 comma 2 and so on. 



(Refer Slide Time: 04:58) 

 

So, for we have seen examples where you use only one generator would we can use more 

than one generator. So, what this says is, let X run through the list 1 to 10, let Y run 

through the list 1 to 10 and construct the list of all pairs X comma Y that are generated 

by combining these values of X and Y. So, this is say something like for each X in the 1 

to 10, for each Y in on 10 produce X comma Y. 

So, therefore, if I fix a value X equal to 1, then it will generate every possible Y, then for 

X equal to 2 we generate every possible Y and so on. So, the later generators move fast. 

So, I have 1, 1; 1, 2; 1, 3; 1, 4 and 1, 10. So, X is fixed is 1, Y will 1 to 10, then X to 

move to 2, again Y will move comma 10 and finally, we will get of course, 10 comma 

10. So, when we have multiple generators, they are generators to the right or executed 

are there run through for each element of the generators to the left. 



(Refer Slide Time: 06:10) 

 

So, here for example, this is a way to generate all pairs. So, remember pair for to this is 

formula. So, if you want integers with satisfy the function X, the relation X squared plus 

Y squared equal to Z squared up to a certain upper limit. Then, we can run X from say 1 

to 100, Y from 1 to 100, Z from 1 to 100 and check that X time X plus Y times Y is equal 

to Z times Z extract out this. 

So, this is using are list comprehension and multiple generators, we can generate all the 

Pythagorean and so on. If you see this notice that 3, 4, 5 is a Pythagorean triple. So, it 

will be generated by this from we run, but then later on when X becomes 4, then we will 

also generate 4, 3, 5. So, this actually generates duplicates. 

(Refer Slide Time: 07:06) 

 



So, we get 3, 4, 5 and we also get 4, 3, 5. So, supposing we do not want to less these 

separately, because this are essential the same triple is just in different order, then we can 

be a little more careful in our generator. So, generators can actually just as we said that 

for every X, Y is generated for every Y is Z is generated, a values said we generated for 

Y can depend on the current value for X. 

(Refer Slide Time: 07:33) 

 

What we can say is that, we always want to generate these in the order X less than equal 

to strictly less than Y, strictly less than Z. So, X on to 1 to 100, but for each value of X, I 

only check Y is from X plus 1 and only check was Z's and Y plus 1. So, this gives us set 

of triples without any duplicates, because now I will get 3, 4, 5, but once I said X to 4, I 

cannot generate 3, because Y will start from 5. 



(Refer Slide Time: 08:09) 

 

So, here is another function using rewritten using list comprehension, remember the 

function concat, it dissolves brackets, if has a concat of say 3, 7 into list and 4, 6, then 

what tells us produce from this, list 3, 7 4 6. So, we are taking the list of list, it producing 

single list by just collapsing all of them into single list, it is empty, just this is like vector. 

So, this as okay, concat of l, for you take each element in l, so I take this, then I take this, 

then I take this, so Y will we first this and Y will be first this, Y will be first this. 

And now, I take each X and Y, so X now is this, then this, then this, then this, these are 

the values takes X, X and output all of this as 1’s. So, it takes every Y in the inner list 

takes every element of that list and extracts does not algorithm. So, therefore, this 

disolves one level of brackets and behaves exactly like that kind. 



(Refer Slide Time: 09:13) 

 

So, let us just look at a couple of more, slightly more exotic examples. So, supposing we 

want take a list of list and extract all the even length non-empty lists. So, if I take 

something like this, so this is the list of list in this as like 1, this as length is 0, length 1, 

length 2, length 3, but I do not want to this, I only want to extract 6, 8. So, I want to 

extract all the even length non-empty list in a given list. 

(Refer Slide Time: 09:54) 

 

So, the new thing here is that; the filter that we want to take the list of list check each 

element in the list and extracted provided it is length is even. Remember, that length in 

anything be even is just checking, the remainder with respect to 2, we just want to take 

the length of the given list divided by 2 and check whether the answer is 0. But, one 



important future here is we want non-empty list, the way we can do non-empty list in one 

short in this list comprehension is by providing a pattern here, which only matches non-

empty list. 

So, this tells do not take every element of l, only take those elements are l, which are of 

the form X colon X S. So, in other words in earlier example if we saw empty list does a 

given element in the list of list, then this pattern no match. So, it is just keep it. So, for 

every non-empty list in l, check, if is like this even and if so, then put out that X S. 

(Refer Slide Time: 10:58) 

 

Now, given that we have this pattern, we also have this structure of this list. So, we can 

extract not just entire list, but any part of it. Is supposing, we want to modify the slightly 

to say, we do not want all to the entire non-empty list, we want the head of the even 

length list. So, this is again non-empty. So, then is simple enough, we just take the 

exactly same right hand side, we check first of all that is non-empty by putting the 

pattern X colon X S in l, we use mod to check the like this even. 

But, now we do not to entire list, we use this pattern to extract only the head of it. So, 

you can the message from these example is that, when we write a generator is not just a 

simple variable, we can actually use a pattern and use that pattern to generate elements of 

length. 



(Refer Slide Time: 11:55) 

 

So, list comprehensions are essentially just syntactic conveniences for us, it is not a 

fundamental concept, it is just way of writing map and filter and more readable format, 

which is very similar to the set theory notation and easy to decode. Rather than nested 

map and filters and in fact, you can formally translate this comprehension using map, 

concat and the version of filtering. 

So, list comprehension typically as this form have an output expression, which is 

generated by a bunch of input conditions. So, each of this is either a Boolean condition 

or it is a generator and in the generator we have patterns. So, we can either set p belongs 

to l or b and we apply condition b, it applies to the things which have been generate 

before. 



(Refer Slide Time: 12:47) 

 

So, a boolean condition access a filter. So, if I have expression form e, such that b 

forward by Q, then this is an expression which is allowed in Haskell, if we are not seen 

before. So, we can write this is a expression Haskell, it will using the conventional, if 

there hence. So, it says if b is 2 and this is the output, otherwise this is the output. So, in 

other words for whatever list I am generating, if b wholes then I continue to apply the 

remaining things, otherwise I just keep it. 

So, for each element in simplicity this apply to things have been generating in the left. 

So, if the element from the left satisfy the condition, then I continue to process using 

what remains, otherwise I got. 

(Refer Slide Time: 13:33) 

 



What about generators? So, generators produce list of candidates. So, if I have a 

generator when I need to take each element of p and apply this e such that Q do it. So, I 

have map each element of p with this function. So, his map f of l, where f of p is e, such 

that Q and if p is not where matched, so this is because the pattern, then I do not do 

anything. 

So, this is taking care of the fact this is the pattern. So, the pattern itself does not matter, 

if this not a pattern I would have this case, if a elements I will just have f of X this e, 

such that Q, but since I have a pattern, it says if the pattern matches then his nothing the 

pattern does not skip it. Now, this is a naïve translation and we will see why. So, for we 

have not use concat, we have use map and we are used kind of filtering efforts. 

(Refer Slide Time: 14:30) 

 

So, let us look at an example to see, why this goes off, so let us look at this simple 

example. So, supposing we want to square all the even numbers between 1 and 7, so we 

generate all the numbers from 1 to 7, so I keep there even and then square now the first 

thing that we have is a generated. So, we have to applied the map thing. So, it says map f 

to 1 to 7, where f of n is what remains; that is this and this. So, this is that e, Q, e such 

that and now, we are to inductively recover this. So, this is a property. So, this will be 

replace by if then else. 



(Refer Slide Time: 15:10) 

 

So, it says map f to 1 from to list 1 to 7, where f of n is, if n is even, then n square the list 

containing n square else their happens and now if I apply this to each element, then for 1 

we get the empty list, for 2 we get the list containing 4 and so on. So, you will notice 

that, what you would expect from this list is, we will expect 2 squared, 4 squared and 6 

squared. 

So, in other words we will expect the list 4, 16, 36 to be the output of this list 

comprehension, but we actually get this complicated expression with the lot of curious 

brackets. And this is precisely why we need the concat, we need to X eliminate these 

brackets. 

(Refer Slide Time: 15:52) 

 



So, the correct translation of in the generator is to insert a concat. So, we do not just map 

f to l, we take the resulting output and we dissolve one level of brackets. So, result of 

moving a generator from this expression is to concat for result of mapping f to the list. 

(Refer Slide Time: 16:14) 

 

And now, if we do this everything works out find for that example and you can check it 

works in general. So, we take the same list n square, such that, n is 1 to 7 and n is 0. So, 

after one expansion we have this map, but now we have this concat of f. So, after second 

expression, we have this if, we still have this concat in front of it. So, now, we get concat 

of this earlier expression that we had and now the concat dissolves this brackets and we 

moves the empty list. So, I just get 4, 16 and 36, which is the expected output. 

(Refer Slide Time: 16:49) 

 



So, let us now look at the example that we had in the introduction to introductory video 

to the course. So, this is the sieve of Eratosthenes. So, what is the sieve of Eratosthenes, 

it generates all the possible primers. So, this strategy is a following start with the list of 

all numbers beginning with 2, because a first prime is 2. So, the left most number with 

the list at any point is a next prime, once we enumerate a prime, we remove all this 

multiples from the list. Therefore, their no longer candidates b primes. 

So, let us just see how it works. So, supposing we start with infinite list infinite list if you 

with in the finite prefix. So, we have up to 20. So, now, the first number in this list is the 

first prime namely 2. So, we mark 2 is a prime and now, we must remove all it is 

multiple symbol. So, the first multiple of 2 is 4, the next is 6, 8 and so on. So, we go 

through this infinite list marking of all the infinite list. So, this keeps as a resulting list in 

which the first number that is left is 3. So, 3 is now at time. 

So, we knock of it is multiples. So, 6 is already knock off, if you knock of 9, 12 already 

knock off if you knock of 15, 18 is already knock off, but we important 21 and so on. 

After knocking of multiples of 3, we also got into 9 and 15 and of course, a lot of 

numbers to write which we do not see. So, now, the next prime is a 5 and then, we will 

knock of 10, 15, 25, 20, 25 and so on. So, this is the process by which we generate the 

primes. 

So, of course, in this we have several infinite processes. First of all start with infinite list 

in every time it big out the first element, we have to remove all it is multiples. So, that is 

again and infinite process with we have go through this infinite list and knock of all them 

multiples. 



(Refer Slide Time: 18:48) 

 

Nevertheless, as we claimed in the introductory video, we can write this using this 

intuitive notation, it says apply the sieve with the list infinite list 2 onwards. Remember, 

by lazy notation this is the list 2, 3, 4 and so on, because a lazy valuation, this make 

sense and result to applying sieve to a list is to extract the first element is a prime and 

then, remove all multiples that elements from the list. 

So, if I take all that this, a tail of the list for every Y, I keep it only if does not get divided 

even only for X and then, I recursively apply sieve to that. So, this is such singly 

describing the sieve Eratosthenes, take the list to onwards and apply sieve to it sieve 

extracts the first element, removes all this multiple from the tail and apply sieve 

recursively to that take. So, if we look at the way that this evaluates could actually makes 

sense. 



(Refer Slide Time: 19:47) 

 

So, we say that set of primes is a result of prime sieve to 2 onwards. So, sieve 2 onwards 

is take out the first element and apply sieve to 3 onwards, such that elements 1 divide 2. 

Now, this in turn will say expect the first element of this, so first element of this at this 

by 3. So, it will say applies if to 3 and the rest, s, this is just saying that, if I expand this 

inner list of this comprehension, when this produces 3 followed by 4 onwards in the 

same property. 

Having done this, I got the first element, so simple extract it out and then, it will say 

apply sieve 2, the result of this original list, which we already, this is the list that is 

currently running. So, we take every element in that list and apply another condition. So, 

one second, if we do this two nested list comprehension is a first element that conserve 5. 

And so now, after we extract the 5, then it will say take the inner list that we are already 

working with two list comprehensions and apply a third one. 

So, this is the way that the sieve function gets rewritten and as it is rewritten, we get 

more and more primes. So, do right this for yourself g h c i and verify that, it does 

generate times. So, this is not necessarily the most efficient way to generate times. In 

fact, it is not the most efficient in generated primes. But, it certainly an interesting 

exercise, it says that very direct implementation is possible, because of the combination 

of this list comprehension notation and lazy evaluation. 

Of course, lazy evaluation crucial other, we cannot go with infinitely set all and using 

lazy evaluation and using this comprehension, we can write a very succinct 2 or 3 line 



implementation of a very basic algorithm. In such a way that, it is immediately obvious 

what is going on and it does the expected. 

(Refer Slide Time: 21:57) 

 

So, what we have seen is that, we often use map and filter together and list 

comprehension is a succinct and readable way of combining these functions. So, that we 

can directly understand, what is going on, but list comprehension is not in itself the new 

piece of notation in Haskell is nearly, what is called syntactic sugar is just easy to read 

form of something that can be describe directly using compare map configure. 


