
Functional Programming in Haskell 

Prof. Madhavan Mukund and S. P. Suresh 

Chennai Mathematical Institute 

 

Module # 03 

Lecture - 01 

Computation as Rewriting 

 

In order to explain some of the unique features that are available in Haskell, we need to 

understand how Haskell computations, how Haskell programs are executed; otherwise, 

how computation progresses in Haskell. 

(Refer Slide Time: 00:13) 

 

In general, in functional programming languages is like Haskell, computation is a 

mechanical process of a rewriting definitions. So, we have definitions which allow us to 

replace expressions on the left hand side by expressions on the right hand side and the 

process of computation is just to keep on doing this, until no further reduction is 

possible. So, this process of replacing left hand side by right hand side is often also 

called reduction. 

So, when no further reduction is possible we have potentially an answer. Now, of course, 

if this expression is of the type that we want, if it is an int or bool or something, then it is 

a valid answer, if it is of a form which is not in the type that we would like then we will 

get an error saying that some definition is missing. To start with Haskell has built in 



definitions for the built in types. 

So, when we have an arithmetic expression like 3.5, then Haskell knows that it can be 

simplified to 8. It is not important for us how these definitions are built into Haskell, but 

these are obvious things that we all know and this is what we need to say that these are 

available to us to start with. So, similarly Boolean expressions like true or false would be 

rewritten as true. 

(Refer Slide Time: 01:25) 

 

Now, in addition; obviously, we provide new definitions through our Haskell function 

definitions or our Haskell programs. So, here is a definition of the exponentiation 

function, so it says that anything raise to the power 0 is 1. So, this is the base case, this is 

x to the power 0 is always 1, then it says x to the power n if it is not zero it is going to be 

x times x to the power n minus 1. So, this is just the basic inductive definition of the 

exponentiation function. 



(Refer Slide Time: 01:58) 

 

Now, suppose Haskell is come fronted with an expression of the form power 3 2 that is, 

we are supposed to compute 3 to the power 2. So, at this stage the only thing that can be 

simplified is the definition of power itself. So, using the function that we have defined 

we get the definition that power x n is x times power x to the n minus 1. So, now, this n 

minus 1, 2 minus 1 is now an arithmetic expression that can be internally simplified. So, 

using the built in simplification we replace 2 minus 1 by 1, so we get 3 times power 3 1. 

Now, once again we cannot evaluate this multiplication, because the right hand side is 

not yet a value that can be multiplied by 3. So, we have to again appeal to the definition 

of power and expand power 3 1 as 3 times power 3 1 minus 1. This is just a blind 

substitution this is what you should remember it, it just says that power x n should be 

replaced by x times power x n minus 1. So, this is just a plain substitution, it does not 

require any intelligence on the part of it. 

It simply says, if I see a pattern which looks like this I can replace it to the pattern that 

looks like this, where the corresponding values will be transported to the current one, 

corresponding places. So, now, again 1 minus 1 is a built in expression, so we can make 

it 0, now fortunately power 3 0 has a simple form which is 1. So, using the user 

definition for power 3 0 I get to 1 and now I can start a plain arithmetic internally. So, I 

get 3 times 1 is 3, so I get 3 into 3 and then 3 into 3 is 9. 

And so by this process of simplifying using a combination of the definition of power 

which we provide and the arithmetic expressions for subtractions and multiplication 



which are built in to Haskell, we reach the conclusion that 3 squared is 9. This is not 

because Haskell knows arithmetic or it knows anything about exponentiation, it is just 

that the way we have defined the computation rules, it ensures that the answer is 

meaningful. 

(Refer Slide Time: 04:16) 

 

Now, there may be situations where more than one thing is possible, in our previous 

example at every stage more or less we could do only one thing, maybe at this point we 

could do two things, where we could multiplied 3 with the bracketing we can do one 

thing. We have 3 times 1 with the 3 bit, we did not have brackets we could possibly do 

this in different of this. But, there will be situations where it is ambiguous, so here for 

instance we have an arithmetic expression which has two sub expressions which we need 

to be evaluated. 

So, I have 8 plus 3 times 5 minus 3, so if I choose to go left to right, then I first replace 8 

plus 3 by 11 and then replace 5 minus 3 by 2 and finally, we have something where we 

can multiply and get 22. But, we can of course, just as well do it the other way, we could 

start with 5 minus 3 and make it 2 and then move to 8 plus 3 and make it 11 and still we 

get the same answer. So, we are familiar with the fact in arithmetic and this will not 

matter, it does not matter we with, whether we simplify 8 plus 3 first of 5 minus 3 first. 

So, either although we will reach the same result, now the same could happen when we 

invoke function like power. For instance, suppose we invoke power with the arguments 5 

plus 2 and 4 minus 4, then if we choose to start with 5 plus 2 then this becomes power of 



7 4 minus 4. Then, I replace 4 minus 4 like 0 and then the power definition of 0 between 

1, but if we do it the other way something interesting happens. 

So, now, we start with 4 minus 4 and replace it by 0 and at this stage now there are 

actually two definitions that we can use. Because, the definition of power for 0's, since 

power x 0 is 1, in other words we could just as well have written power underscore 0 is 1 

because the x plays no role here, so the x is not used. So, we said in the beginning that if 

we have a pattern in which the variable that we are matching is not used in the answer, 

we can as well make it an underscore. So, even though we have said x, the value of x is 

not used. 

So, in particular here Haskell can look at the definition of power and the second 

argument is 0 and just ignore this argument and give 1. So, we have evaluated power in 

two ways, but the second way we have done something which is somewhat unexpected, 

which is that we have reached the final answer while not evaluating something in 

between. So, this is perhaps the curiosity, but what would be it, something like this, so 

we know now the power anything 0 evaluates to 1 without looking at anything. 

So, what do we replace that anything by a division by 0, so logically if I write div 3 0 

then I should get an error, but if I say power div 3 0 0 would Haskell expose that error or 

would it blindly apply the definition for power anything to 0 and give me a 1. So, we will 

come back in this very shortly in the same lecture. 

(Refer Slide Time: 07:33) 

 

So, Haskell therefore, has to make a choice about what order to evaluate expressions. So, 



we have seen that Haskell expressions are of form f apply to e. So, we call f the 

outermost function and e the expression to which it is applied, e in turn could of course, 

contain more functions and so on, but they are inside. So, here is an example, so we have 

an expression which says take the head of the list 2 appended to reverse of 1 to 5. So, 

there is an inner function reverse and then, there is an inner operator colon, but the outer 

function in this is head. 

So, in our terminology if we say f of e this is head of something, so that something is e 

and f is head. Now, what Haskell does is it prefers to use a definition which applies to f 

rather than definitions of apply inside each. So, in particular here if I have a choice 

between expanding reverse 1 to 5 and taking head of the list, then I would first try to use 

the expansion for head. So, if Haskell goes outermost, it tries to use the outermost 

definition that it can use in the current expression to reduce. 

(Refer Slide Time: 08:45) 

 

So, in this case it turns out for example that you can take head of this list, now head of x 

colon x is gives me x we know this. So, this is a kind of built in rule in Haskell, so in this 

expression the head value is known, it is 2. So, without evaluating reverse you can 

extract the head, so this is what Haskell would do, it will try to get the answer with as 

little work is possible, if you like to think of it that way and hence this is sometimes 

called lazy evaluation. 

So, the argument to a function in Haskell is not evaluated, if the definition of the function 

does not force it to be evaluated. So, I have no interest in knowing what the result to 



reverse 1 to 5 is, because it is not going to be part of my answer. So, head of 2 colon 

reverse 1 to 5 just gives me 2. On the other hand if I want the last value of the list, then I 

do need to know what happens to the end. So, if I say last of 2 colon reverse 1 to 5, then I 

must reverse this list and get 5, 4, 3, 2, 1. 

So, that I can then conclude that last of that definition that list is 1. So, Haskell’s lazy 

reductions starts from the outermost thing and if it finds, it has enough information to 

process the answer, it does not need to look at an argument, it will just ignore that 

argument. 

(Refer Slide Time: 10:01) 

 

So, we come back to the question about what happens to power when we give it a 

nonsensical argument in the first position, but 0 in the second position. So, Haskell's 

strategy would be to first look for a matching definition for power. So, it finds a 

matching definition of power, this matching definition does not require me to evaluate 

text, so which ignores it, so this would actually give me 1. 

So, let see how this works, so just to convince you that this is real, so here is Haskell file 

which contains that exact same definition of power, it says power of x 0 is 1, power of x 

n is x times power of x n minus 1. So, now, if I run this, I say power say for that would 3 

2 we have seen before or power 7 5 works correctly. Now, if I say power div 3 0 to the 

power 0, I get 1 and this is not because div 3 0 is a sensible expression, because div 3 0 

on it is own gives me as I would expect a divide by 0 error. So, lazy rewriting allows me 

to compute some values even though the arguments are not fully defined. 



(Refer Slide Time: 11:29) 

 

Fortunately in general this order evaluation even in a functional expression does not 

matter, just as it as for arithmetic, it does not matter. If all the simplifications are possible 

which ever order we choose, then the order does not matter we get the same answer. But, 

as we have seen if we choose one order, for example if I choose the order in which I try 

to evaluate the argument before the function, then I will reach a situation whether 

computation does not terminate or it terminate to an error, whereas if I use the outermost 

things, it does terminate which sensible answer. 

Now, this is not to say, I mean we are not claiming that arithmetically something like 

infinity to power 0 should be 1. So, we just saying that as per our rules it is possible to 

conclude from this expression with the answer is 1, it does not mean that it is a 

arithmetically sensible answer. So, the point is that using outermost reduction in this 

case, you get some expression which terminates, whereas if we use innermost reduction 

that is you start from the arguments and move outwards, then you will get an situation 

where your computation either does not terminate or gives some error. 

So, lazy evaluation is also called by need, it uses the arguments only if they are needed 

and therefore, as we have seen it can terminate even though there are undefined sub 

expressions which are not used in the computation. 



(Refer Slide Time: 12:56) 

 

So, why is this useful other than curiosities like power? Well, let us look at this 

definition, so here is a definition which creates an infinite list. So, infinite list it says is of 

type list of Int and what it, how you get it is by calling an auxiliary function with an 

argument 0 and what is this function do, if it takes an n it sticks into front and then calls 

itself with n plus 1. So, if I call inflistaux with 0, this becomes 0 and then inflistaux 1 

which in term comes 0 1 and inflistaux 2 and so on. 

So, in other words this is going the 0 it produce 1 the 1 produce a 2 and so on. So, this is 

going to produce a infinite list starting with 0. So, we can verify that, so here we have a 

again the definition that we just wrote. So, we have inflist dot reaches, so if I put this 

simple ghci and I ask for what infinite list returns indeed it has return infinite list that is it 

just keeps going. So, Haskell is able to somehow generate this infinite list and show it to 

us because it generates it monitor time. 



(Refer Slide Time: 14:33) 

 

So, as we have seen infinite list the definition of given up of produces this infinite list 

and if we just run it in the interpreter and ask for the value of infinite list, we just get an 

unending stream of numbers. On the other hand, if we ask for some function on this list 

we does not use the entire stream, then we can get a sensible answer for instance, if we 

ask for the head of this list then as we saw before what Haskell will do it will try to apply 

a definition for head, but head will ask that I need some values in the list more to 

compute the head. 

So, then I will expand infinite list just enough, so infinite list will know be a expanded as 

inflistaux 0 which will in turn become 0 colon inflistaux 1 and at this point we have a 

value. So, head of this will come out a 0 we could also have a function which requires 

more of the infinite list, for instance suppose we want to first two elements we say take 

two of this infinite list, then in order to get anywhere we first have to get the first element 

and then we take it out and then we have to recursively take one of the remaining. 

So, again we have to get this one value out and then once we have got two values out 

then we can stop and say the take two of this list is 0 comma 1. So, in other words by 

using lazy evaluation, we can take infinite list and productively use them in our court. 



(Refer Slide Time: 15:58) 

 

So, in fact, a Haskell allows us to define infinite list directly using the range notation, if 

you remember we had this notation from m to m. So, now, if we leave out the apparent 

then we get a list with does not have a terminating point. So, m dot dot it just m m plus 1 

and so on we can also write an infinite list with some arithmetic progressing like thing. 

So, m m plus d m plus 2 d and so on, so we might ask why this is useful well it will turn 

out to be we will see later examples, where allowing infinite list in the definition of a 

function makes it is simpler to argue about it. 

Because, if we do not know an advance what is the upper bound of the numbers we are 

looking for then we can just provide an infinite list and let Haskell figure out how many 

of these numbers needs. 



(Refer Slide Time: 16:47) 

 

So, to summaries the process of computation in a functional programming language is 

rewriting or reduction and this applies rules from left to right to reduce expressions using 

the definition which either built into the language or provided by the user. Now, this 

allows multiple orders of reduction different sub expressions in the same expression 

maybe available for reduction. So, Haskell uses what is called lazy evaluation, we 

simplifies the outermost expression first and one of the consequences of lazy evaluation 

is that we can now work with infinite list in aux. 


