
Function Programming in Haskell 

Prof. Madhavan Mukund and S. P. Suresh 

Chennai Mathematical Institute 

 

Module # 01 

Lecture – 01 

Functions 

So, welcome to the first lecture of the course Functional Programming in Haskell. 

(Refer Slide Time: 00:06) 

 

So, functional programming starts with the point of view that the program is a function; 

abstractly a function can be thought of as a black box; that takes inputs and produces 

outputs. In other words, a program is a function that transforms inputs to outputs. So, 

when we write a program in a function programming language, what we are doing is 

specifying the rules that describe how to generate a given output from a given input. And 

when we compute in a functional programming language, we apply these rules to the 

input that is given to us in order to actually produce the output; that is expected. 



(Refer Slide Time: 00:50) 

 

So, the first thing we have to ask ourselves is, how do we buildup these programs. Now, 

it is impossible to start from nothing, so we have to assume that we have some built in 

functions and values. So, we assume that we begin with something that is given to us and 

then, we use these built in functions and values to build more complex functions. 

(Refer Slide Time: 01:17) 

 

So, let us look at a concrete example, suppose we start with the whole numbers; that is 

the integer 0, 1, 2 and so on, so the non-negative integers and suppose the only thing that 

we know, how to do with these numbers is to add 1. So, we have a successor function, 



which you can think of us plus 1 function. So, it says that 0 plus 1 is 1, the successor of 1 

is 2, so 1 plus 1 is 2 and so on. 

So, this is what is given to us, we have the whole numbers and the successor function. 

Note by the way; that we have uses slightly non-standard notation for the functions, 

normally one would successor of 0 with brackets like this. So, we write f of x normally, 

but in functional programming, we will see that, we will normally write f x eliminating 

the brackets. So, this has two advantages, one is you have fewer brackets to worry about, 

but it also have some interesting technical advantages, which you will describe in a later 

lecture in this week. 

(Refer Slide Time: 02:18) 

 

So, now, that we have a successor function, we can apply twice to an input for example, 

and I get a new function which adds 2. So, plus 2 of n takes n apply successor and then, 

apply successor to that, so it as though we had two boxes with us called successor. So, 

we feed n here, then we get n plus 1, if feeder to the second box and we get n plus 1 and 

what we are saying is that, now we can take this two boxes and call this outer box plus 2. 

So, this is what it means to compose to functions, you take the output of the first function 

and feed it to the second function. So, in this case, we have composed the same function 

twice, we have taken the successor, half successor. 



(Refer Slide Time: 03:05) 

 

However, we can also combine two different functions, for instance we can take the plus 

2 which we are defined and feed it output successor. So, we have plus 2 and now, we 

have successor. So, we already know that, if we take a number n and feed it plus 2, we 

get n plus 2 and then, we feed it to success and we get n plus 3 and now, this gives as a 

new box, which we called plus 3. So, in this way we can combine functions by function 

composition, which is well known to us to mathematics. 

(Refer Slide Time: 03:42) 

 



But, now suppose we want to extend or definition of plus 2 and plus 3, plus 4, plus 5 plus 

6. In general, we want to define plus with two arguments n and m, where we mean that 

when we say plus n, m; we apply successor to n, m times. In other words, we start with n 

and then, we do plus 1 and then, we do plus 1 and then, we do plus 1. So, totally we add 

n, m times 1 m times. 

So, this is what plus means and if you remember, this is how we were taught the 

definition of plus when you were in kinder garden, you just keep adding 1 by 1 by 1 m 

times. So, how would be describe this in our setting, because we need to describe this 

family of plus 1’s. 

(Refer Slide Time: 04:29) 

 

So, by the way again note this notation, we do not write a function of two arguments the 

bracket as usual, but we just write the arguments one after the other. So, plus followed by 

the first argument followed the second argument, you can just thing of it right now as a 

peculiar syntax which eliminates arguments brackets and commas. But, as we will see 

this is a very interesting way of thinking about functions from a computational stack. 

So, what are the rules for plus will be know that plus m 1 is a same as successor the built 

in function adds 1, plus n 2 is, we have seen the successor of successive, but we can 

thing of successor of n as plus n 1. So, we are taking plus n 1 and then, applying 

successive to that. So, in the same way plus n i as we saw before will apply the successor 

i times and the question is, how do we write a rule which captures this mysterious dot, 



dot, dot which says do something a fix number of times, but that fix number of times 

depends on the value of the argument. 

(Refer Slide Time: 05:33) 

 

So, this brings us to the rime of inductive or recursive definitions. So, an inductive 

definition is 1, where we specify a base case and then, we specify the value for larger 

arguments in terms of smaller arguments. So, for instance, we know that, if we adds 0 

when we do nothing, so plus n 0 is always n. So, this is the base case, we do not have to 

any computation, we just written the first argument. 

Now, plus n 1 consist of adding 1 to n, but we can also thing of applying the previous 

value 0, so we get plus n 0. So, we just do not think of it is n, but we think of it as the 

base case and now, we apply successor to the base case. Similarly, in general, if I want to 

add something to m plus 1, then assuming that I know how to do n plus m, then I can add 

1 to 11. So, this is just say that the value of n plus m plus 1 is the same as the value of n 

plus m, which I know how to do inductively, plus 1 which is given to be. So, this is my 

given function. 

So, this is the basis of inductive for recursive definitions that you take the base case, 

whose values is obvious and for larger values to describe it in terms of operations that 

you know how to do plus the operation you trying to define one smaller values, which is 

inductively known to be true. 



(Refer Slide Time: 07:07) 

 

So, how does computation work, well it just unravels the definition. So, supposing I want 

to add 7 to 3, now in our universe, we have 0, 1, 2, etcetera and we know that successor 

of 0 is 1; successor of 1 is 2 and so on. So, I can think of 3 not as 3, but a successor of 2 

and now, I have a rule with says plus, if we remember the rule is just plus n successor of 

m is equal to successor of plus n, m; this is the rule that we wrote. So, if I have plus 7 

successor of 2, this is successor of plus 7, 2; when I plug in 7 for n and m for 2. 

Now, once again I can expand this 2 as successor of 1 and apply that rule again and I get 

success of successor of plus 7, 1 and then, once again I can replace the number 1 by the 

expression successor of 0 and then, I get successor of successive 1 plus 7, 0. Now, this is 

the base case which is 7. So, I get successor of success of 7 and then, if I continue with 

this computation, this will give me 8 by the built in rule, this will give me 9 by the built 

in rule and this will give me 10 by the built in rule. 

So, this is how I will get plus 7, 3 equal to 10, the important thing to note in this is that 

computing the value 10 does not involve understanding anything about numbers, it is just 

syntactically replacing expressions by expressions and this is something that we will see 

more formally later. So, this is how computation works in a functional programming 

language, you have rules which tell you how you can replace one expression by other 

expression and you keep replacing expressions, until you reach the value which cannot 

be simplify. 



(Refer Slide Time: 09:06) 

 

So, let us look at another recursively defined function. So, just as addition is repeated 

application of the successor function, multiplication as you remember from school is 

repeated addition, when I say multiply m by n, it means add n to itself m times. So, we 

have to apply plus n, m times starting from 0. So, the base case says that if I multiply any 

number base 0, then I will get 0. 

So, multiplying, so this is not n, but 0, so multiply m by 0 is 0 for every n and now, n 

times m plus 1 is just m plus n times n. So, this is the inductive case, I know how to do 

this, because this is smaller and this is now unknown function, because we already define 

plus. So, plus was not a given function, successive was the given function, but we 

already define plus in terms of successive. So, now, we can use plus to define 

multiplication. 



(Refer Slide Time: 10:13) 

 

So, to summaries a functional program describes rules to tells us how to compute outputs 

from inputs, what we have seen is that the basic operations that we use is to combine 

functions. So, we use function composition, we feed the output of one function as the 

input of another function and now, often we have to apply this function composition 

more than once, but not number of times, we know an advance. 

So, we did plus 2 and plus 3, we knew exactly how many times, we have to compose the 

function, but may wrote the general plus and the general multiply, we have to apply these 

function depending on the value of the argument. So, for such functions, we saw that 

recursive definitions or a good way to capture the dependence of the number of times the 

function has we composed based on the input value. 


