Model Checking
Prof. B. Srivathsan
Department of Computer Science and Engineering
Indian Institute of Technology — Madras

Lecture - 09
Hardware Verification Using NuSMV
In the previous module, we saw how to model simple transition systems in NuSMV. In

this module we will see how hardware circuits can be described in the tool NuSMV.
There are 3 parts to this module, in the first part we will see a simple circuit, in the
second and third parts we will see more interesting circuits.

(Refer Slide Time: 00:31)

MODULE main
VAR
x: boolean;
r: boolean;

DEFINE

y i= I(x xor 1);
ASSIGN
init(r) := FALSE;

next(r) := x xor r;

Consider the circuit that we saw in unit 1, there are 2 inputs x and r, the output is
determined as NOT of XOR of x comma r the next value of the register r; the next value
of the input r is determined as XOR of x and r; the next value of x is non deterministic it

could be anything this is clearly described in this transition system.

The initial value of r is assumed to be 0; the initial value of x could be either 0 or 1. Once
the value of x and r are given the value of y gets determined this gives us 4 states. Let us
now try to describe the circuit using NuSMV. As usual it starts with module main. There
are 2 variables x and r both of them are of the boolean type these are the inputs. The

initial value of the variable r is false.

There are 2 things now we need to define the next value of r and we need to assign the
value y to be not of XOR of x comma r. Note that there is a difference between these 2
this says that once I had x and r the next value of r is XOR of x comma r. So, there is a
unit delay for the next value, however once I get x and r immediately the value of y is not

of XOR of x comma r for the value of y there is no delay.

How do we describe this? Here we say that next of r is x XOR r this is fine. What about
y? We cannot say next of y is not of XOR of x comma r because once the value of x and r
are given the value of is y is determined by the current values of x and r. To model such
things there is a key word define this says that the value of y would depend on the current

value of x and r as follows it is given as not of x XOR 1.

We do not have to separately declare the variable y in the VAR block. We can directly
write y to be not of x XOR r. This variable does not play a part in determining the number
of states. The number of states is going to be determined by the variables here. Since x
and r are boolean there are 2 choices for x, 2 choices for r. Hence, the number of states is
going to be 4.

(Refer Slide Time: 03:53)

GNU nano 2.0.6 File: circuit-demol.sav

HOOULE main

VAR
x: boolean;
r: boolean;

DEFINE
y = ! (x xor r);

ASSIGN
initir) := FALSE;
next(r) 1= x xor r;

[Read 12 lines |
gf Get Help WriteQut & Read File gl Prev Page Cut Text g Cur Pos
gl Exit Justify Where Is iy Mext Page UnCut Text To Spell

Let us now see a demo of this, i have written the code in the file circuit hyphen demol

dot smv.

(Refer Slide Time: 04:33)

srivathsan:Examples sri$ nano circuit-demol.sav
srivathsan:Examples sri$ NuSMV -int circuit-demol.smv

wxx This is NuSMV 2.5.4 (compiled on Fri Nov 23 21:36:06 UTC 2012)
##+ Enabled addons are: compass

was For more information on NuSMV see <http://nusav. fbk.eu=

wex or email to <nusmv-users@list. fbk.eus,

=== Please report bugs to snusav-users@fbk.eu=

=== Copyright (c) 2010, Fondazione Bruno Kessler

#=x This version of NuSMV is linked to the CUDD library version 2.4.1
s== Copyright (c) 1995-2004, Regents of the University of Colorade

=== This version of NuSMV is linked to the MiniSat SAT solver.
we See http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
s+ Copyright (c) 2003-2003, Niklas Een, Niklas Sorensson

NUSMV > go
NusMv >

Let’s get into the interactive mode, you could directly give the name of the file in the
command for the interactive mode. So, you can write NuSMV minus int circuit hyphen
demol dot smv. If you remember we used to write read model, flatten hierarchy, encode
variables and build model. So, however there seems to be simple command go which will
do all these for us.

(Refer Slide Time: 04:48)
|

=ex Copyright (c) 2018, Fondazione Bruno Kessler

wex This version of NuSMV is linked to the CUDD library version 2.4.1
wa4 Copyright (c) 1995-2004, Regents of the University of Colorade

=+ This version of NuSMV is linked to the MiniSat SAT solver.
wock See http://www.cs.chalsers.sef(s/Research/ForsalMethods /Minisat
=++ Copyright (c) 2003-20@5, Niklas Een, Niklas Sorensson

NuSMV = go
NuSMV = print_reachable_states -v
RRRREERREERRE Ll Ll Ll Ll Ll L

system diameter; 2
reachable states: 4 (2°2) out of 4 (2°2)

——————— State 1 ———
x = TRUE
r = TRUE
------- State 2 mmm——
x = TRUE
r = FALSE
------- State 3 meemee
x = FALSE
r = TRUE
------- State 4 —————
x = FALSE
r = FALSE
WENRRRESERIRE "y 8y oy 88 ey "
NusMV >]

Let us now print the set of reachable states, print reachable states minus v. There are 4
states given by x equal to true, r equal to true, x equal to true r equal to false, x equal to
false r equal to true, x equal to false r equal to false. As you see this the states are
determined only by the variables in the VAR block.

(Refer Slide Time: 05:22)

. ___|
r = TRUE
——————— State 1 =
x = TRUE
r = FALSE
------- State] ————
x = FALSE
r = TRUE
——————— State 4 =————
x = FALSE
r = FALSE
LLE R e R PR R P R P T R P R PP P R e r
NUSMV = pick_state =i

wrnsnsesnnwesns AVAILABLE STATES sessssssssnss

Choose a state from the above (8-1): §

|
Let us now simulate this transition system we pick the initial state rather and initial state.
There are 2 states one with by x equal to true or false the other one has r to be false and x
to be false as well. The value of y gets determined given the values of the variables x and
1. So, y was not of x r of x comma 1, x r of true and false is true, not of true is false here r
is false. So, XOR of false and false is false, not of false is true this is as we expected. Let
me take this state and simulate for state 5 steps.

(Refer Slide Time: 06:08)

wimiaraeseseses AVAILABLE STATES sssssssswsnss

y = FALSE

X = TRUE
r = FALSE
naa azus State sssmsssssszssssss
1) meeeeercseeeeeeseeee——
TRUE
x = FALSE

Choose a state from the above (8-1): @

Chosen state is: @
NuSMV > simulate -1 -k 5
seassnns Simulation Starting From State 1.1 EEEEEEE

............... AVAILABLE STATES sssssssssswss
e R
a) e

y = TRUE

x = TRUE

r TRUE

So, we started with the state x equal to true r equal to false and y is equal to false. The
next value of r should be XOR of true and false which is true.

(Refer Slide Time: 06:28)

r = FALSE

mn State

1] sessssssssssssnsnssnsnsns
y = TRUE
% = FALSE

Choose a state from the above (8-1): @

Chosen state is: @
NUSMV > simulate =i -k 5

Errees Simulation Starting From State 1,1 ssessess
............... AVAILABLE STATES seseseessssss
s==zssssssss=zzzz §lgle ssss=s=ssss=szs=s
] S ———

¥ TRUE

x = TRUE

r = TRUE

If you see in the available states the value of r is true so if r is not given here you have to
look here. So, r is true however x could be either true or false so that's why get 2 states.

(Refer Slide Time: 06:44)

weex AVAILABLE STATES seersssssvsss

mm: State

B) =eeeeeesesrsmserese—
y = TRUE
x = TRUE
r = TRUE

Choose a state from the above (8-1): 1
Chosen state is: 1

sessnsnnenesnss AVAILABLE STATES sssesvensnses

Ezsssssesssssswns S{At4 mmssssssssswsssss

Let me choose 1, here the value of r is true, XOR of true and false is true so r is going to
be true here and x could be either true or false so you can continue doing this.

(Refer Slide Time: 06:59)

x = TRUE

r = TRUE
smmssssssssssssss State ssss=ssssossssses
1) mmmmme e ———

y = FALSE

x = FALSE

Choose a state from the above (9-1): @

Chosen state is: @

o =ex AVAILABLE STATES seseessssssws
ssssssssessrssres S{3{e seveesssssssswewe

y = FALSE

x = TRUE

r FALSE

Choose a state from the above (@8-1): 1

(Refer Slide Time: 07:05)

Simple circuit

Use of DEFINE

Each time we have 2 successor transitions that was an example of simple circuit. What
you need to remember is the use of the keyword define, define is useful whenever the
output value is determined by the current values of the inputs.

(Refer Slide Time: 08:51)

MODULE main
VAR
inl: boolean:
in2: boolean;
DEFINE
—— ZERD DELAY

out := !{inl & in2);

Let us now look at more examples of circuits, this is a simple NAND with two inputs. Let
us now describes this very simple circuit using NuSMV. Module main there are 2
variables inl and in2 we have assumed that there is a 0 delay here, that is out is
determined as not of inl and in2 immediately with O delay. So, we use the define

keyword what is the transition system representing this circuit?

There are 4 states determined by the values of the inputs and this is in1, this is in2, this is
out. Out is NAND of 0, 0 which is 1 here NAND of 1 and 0, AND of 1 and 0 is 0 and not
of 1 sorry not of 0 is 1. The only place where out is 0 is here where AND of 1 and 1 is 1
and not of 1 is 0. We have not assigned any initial states so all 4 of them are going to be
initial.

(Refer Slide Time: 08:54)

GNU nano 2.8.6 File: nand-demol.smv

HODULE main

VAR
inl: boolean;
in2: boolean;

DEFINE

out := ! (inl & in2);
BE Get Help Writelut L Read File Prev Page Cut Text &8 Cur Pos
g Exit Justify Where Is Next Page UnCut Text To Spell

(Refer Slide Time: 09:10)

srivathsan:Examples sri$ nano nand-demol.smv

srivathsan:Examples sri$ NuSMV -int nand-demol.sav

wexx This is NuSMV 2.5.4 (compiled on Fri Nov 23 21:36:06 UTC 2012)
wax Enabled addons are: compass

wsx For more information on NuSMV see <http://nusav.fbk.eu=

waw oF emall to <nusmv-users@list. fbk.eus.

=== Please report bugs to <nusav-users@fbk.eu=

=== Copyright (c) 2010, Fondazione Bruno Kessler

«x= This version of NuSMV is Llinked to the CUDD library version 2.4.1
s+« Copyright (c) 1995-2004, Regents of the University of Colorado

=== This version of NuSMV is Llinked to the MiniSat SAT solver
wew Sge http://www.C5.chalmers.se/Cs/Research/FormalMethods/MiniSat
=== Copyright (c) 2083-208@5, Niklas Een, Miklas Sorensson

NUSMV = go
HuSHY >

|
Let us simultaneously see a demo of this example in NuSMV. Here is the code lets us

start running it.

(Refer Slide Time: 09:20)

|
wxx Copyright (c) 2010, Fondazione Bruno Kessler

ess This version of NuSMV is linked to the CUDD library version 2.4.1
s Copyright (c) 1995-2004, Regents of the University of Colorado

exx This version of NuSMV is linked to the MiniSat SAT solver.
ook See http://www.cs.chalsers.se/Cs/Research/ForsalMethods/MiniSat
e Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson

NUSMV = go

NUSMY > print_reachable_states -v

R R R AR AR AR R R R R R RN AN R R R AR R ST RRR AR NN AR REREEEEER
system diameter: 1

reachable states: 4 (22) out of 4 (2%2)

------- State 1 —
inl = TRUE
= TRUE
——————— State 1 =mmm——
inl = TRUE
in2 = FALSE
------- State 3 memeee
inl = FALSE
in2 = TRUE
------- State 4 =====
inl = FALSE
in2 = FALSE

NN R R R R RN NN AR R R R R R RN AR A R BB RN AN NN NN RN ERREEY
NuSMV > §

.
Let’s first get the set of reachable states there are 4 states depending on the values of
inputs in1 and in2.

(Refer Slide Time: 09:33)

T R R AR R E IS IR R R RN R R R R g ErzEz Y
NuSMV > pick_state =i

wnnnnennsnsesss AVAILABLE STATES sssesmsswsnes

s=sssssssssssss== Stale sssssss=sss=ssse=
2

out = FALSE

inl = TRUE

in2 = TRUE

munm State smm

EEEEEEIETTEREEE zm 5taté :mmsssssssmssmsss
mmzEmreEreraaaEn 5taté smssrsszssssaaas
3)

in2 = FALSE

Choose a state from the above (8-3):

What are the initial states? Since we have not defined what the initial state is any of them
could be the initial state this is what we have seen here.

(Refer Slide Time: 09:42)

MODULE main

boolean;

boolean;
DEFINE
—— ZERO DELAY
out := !(inl & in2);

What are the transitions? We have not defined anything here, the assigned block is
completely empty. So, each state can move to any of the 4 states there are all possible
transitions. Let us now see this in NuSMV.

(Refer Slide Time: 10:13)

NuSMV = sisulate -1 -k 5
-------- Simulation Starting From State 1.1 seeseess

sessssnenseness AVAILABLE STATES sssssssssnses

out = FALSE
inl = TRUE
in2 = TRUE

mznman §t3t@ smssssssssssmssss

out = TRUE
in2 = FALSE

inl = FALSE
in2 = TRUE

Choose a state from the abowve (@8-3):

|
We pick say state 0 and now simulate the 5 steps you will get all possible options all
possible 4 states as available no matter whatever what state you choose. This clearly
shows that the transition system corresponding to this code is this. Let us now slightly
complicate the code.

(Refer Slide Time: 12:09)

MODULE main
VAR
inl: boolean;
in2: boolean;
out: boolean;
ASSIGN
—— UNIT DELAY
init(out) := TRUE;

next(out) := !{inl & in2);

Instead of assuming that the output comes within a 0 delay I am now assuming that the
output comes after a unit delay. So, we define out in the VAR block we give some initial
value for the output and say that once I have my inputs inl and in2, the next value of the

output is NAND of inl and in2.

If a time t equal to 0 i have 1 and 0 as inputs, at time t equal to 1 the output will be
NAND of 1 and 0 which is 1. The output at time t equal to 2 would be determined by the
values of inputs at time t equals to 1 and so on. Let us now start building the transition
system, since there are 3 variables in the VAR block can you guess the number of states

in the transition system. It would be 2 times, 2 times to this eight states.

Since we have said that the initial value of out is true there are 4 initial states the once
where out is 1.

(Refer Slide Time: 12:12)

GNU nano 2.9.6 File: nand-demo2.

HODULE main

VAR
inl: boolean;
in2: boolean;
out: boolean;

ASSIGN
init(out) := TRUE;
next(out) i= | (inl & in2);
Get Help WriteQut I Read File Prev Page Cut Text Y Cur Pos
Exit Justify Where Is Next Page UnCut Text To Spell

(Refer Slide Time: 12:27)

srivathsan:Examples sri$ nano nand-demol.smv

srivathsan:Examples sri$ NuSMV -int nand-demol.sav

wx This is NuSMV 2.5.4 (compiled on Fri Nov 23 21:36:06 UTC 2012)
##= Enabled addons are: compass

#xx For more information on NuSMV see <http://nusav.fbk.eu=

wwe Of emdil to <nusmv-users@list.fbk.eu»,

=+= Please report bugs to <nusav-users@fbk.eus

=== Copyright (c) 2010, Fondazionme Bruno Kessler

#+% This version of NuSMV is linked to the CUDD library version 2.4.1
wex Copyright (c) 1985-2084, Regents of the University of Colorado

s+« This version of NuSMV is linked to the MiniSat SAT solver.
wxx See http://www,cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
=== Copyright (c) 2003-28@85, Niklas Een, Niklas Sorensson

NUSMV = go
NuSMV = print_reachable_states -v

(Refer Slide Time: 12:28)

. __|
inl = TRUE
in2 = FALSE
out = TRUE
m—————— State] mmaea-
inl = TRUE
in2 = TRUE
out = FALSE
------- State 4 ————
inl = TRUE
in2 = FALSE
out = FALSE
-------- State § mm——
inl = FALSE
in2 = TRUE
out = TRUE
— State 6 —
inl = FALSE
in2 = FALSE
out = TRUE
——————— State] =mmeee
inl = FALSE
in2 = TRUE
out = FALSE
——— State 8 ———
inl = FALSE
in2 = FALSE
out = FALSE

Hnnan 1 ERARNN, BEEZRE ARprEEEEY

NuSMV >

|
Let us now check this in the tool, here is the code. Let us start with printing the reachable
states, see there are 8 states depending on the values of the variables in1 in2 and out.

(Refer Slide Time: 12:45)
|

NuSMV > pick_state -1

snssssnsnsssnes AVAILABLE STATES sssssssssssss

======= State ==========cess===
B) mmmmmmm————————

inl = TRUE

in2 = TRUE

out = TRUE
======== §tate s================
1) mmmmmmmm e

inl = FALSE

inl = TRUE
in2 = FALSE

Choose a state from the above (@-3): §

What are the initial states? There are 4 initial states all of them have the value of the
variable out to be true, if you remember i said if the value of a variable is not written here
then we have to look at the previous state. So, here this is a state where out is true, this is

the state with out equal to true this is yet again a state with out equal to true.

We have 4 initial states, what are the transitions? The transition function says that the

next value of output is given by not of inl and in2, the next value of inl and in2 is

nondeterministic. Let’s start from this state, the next value of output would be NAND of

1 and 1, which is 0.

There are 4 possible transitions because you just need the value of out to be 0 in1 and in2
could be any of the possibilities. Now, consider this state here the value of inl and in2 is
0 and 0 AND of this is 0, NAND of this is 1 this would go to states where out is 1.
Similarly, for these 2 states the successors are the once where the out is 1. Here it’s the
same the only difference is here in the state where the value of inl and in2 are both 1 so
AND of this is 1, NAND of this is going to be 0, so this goes to all these states.

(Refer Slide Time: 14:38)

HEERRREIEIIRRIIRY #ars. FERRRER LEE EEELELEE LEE
NuSMV = pick_state -i

sassssssssssnns AVAILABLE STATES sssssssnsssss

inl = TRUE
in2 = TRUE
out = TRUE

inl = TRUE
in2 = FALSE

Choose a state from the above (#-3):

Let us now check this, let us choose the state where inl, in2 and out are all true. There
were 4 possible transitions each of them would have out to be false. Let us choose this
state both inl1 and in2 are true. So the successors should be the same set of states let us
check it, Yes indeed so.

(Refer Slide Time: 15:09)

Choose a state from the above (0-3): @

Chosen state is: @

............... AVAILABLE STATES ssebnsissnss
---------- State
B) = ——————

inl = TRUE

in2 = TRUE

out = FALSE

inl = FALSE

smzszssssssssssss State msmsssssssssssees

inl = TRUE
in2 = FALSE

Choose a state from the above (8-3):

If i take 2 then there will be 4 successors where the value of output is true. This is the

case so you can keep checking this.

(Refer Slide Time: 15:32)

MODULE main
VAR
inputi: boolean;
input2: boolean;
q: nand2(inputl, input2);

MODULE nand2(inl, in2)
VAR

out: boolean;
ASSICN
—= UNIT DELAY
init(out) := TRUE;
next{out) := !(inl & in2);

Let me now give another way of writing the same code. We are going to define a new
module with the name NAND this is possible in NuSMV. We define a module NAND
with 2 inputs inl1, in2. It has 1 output under the VAR block there is a variable out which is
boolean the next value of out is given by the statement how do we use this module in the

main.

In the main you define 2 variables inputl input2 and you can call the module nand2 of
inputl, input2. Here the states are going to be determined by the values of input1, input2
and q, q has the variable out.

(Refer Slide Time: 16:39)

GNU nano 2.8.6 File: nand-demo3.sav

MODULE nand2(inl, in2)

VAR
out: boolean;

ASSIGN
init{out) := TRUE;
nextiout) = ! (inl & 4n2);

MODULE main

VAR
inputl: boolean;
input2: boolean;
q: nand2{inputl, input2);
Ehel Help Ew-'neum E Read File Prev Page E(.n Text Cur Pos
Exit Justify Where Is Next Page UnCut Text To Spell

Let us see how NuSMYV treats this code. Here is the code where NAND is defined as a
separate module the main module calls nand2.

(Refer Slide Time: 17:05)

=== See http://www.c5.chalmers.se/Cs/Research/FormalMethods/MiniSat
=== Copyright (c) 2003-20@5, Niklas Een, Niklas Sorensson

NuSMV > go
NuSMV = print_reachable_states -v
#ERE e e R L e e L R e

system diameter: 2
reachable states: 8 (2°3) out of 8 (2°3)

w——— CEALE 1 m—
inputl = TRUE
input2 = TRUE
R.out = TRUE

=== Slate 2 mmm——-
inputl = TRUE
input2 = FALSE
g.out = TRUE

——————— State kI

inputl = TRUE
input2 = TRUE

g.out = FALSE
—— GtALE 4 ==mme-
inputl = TRUE
input2 = FALSE
q.0ut = FALSE
------- S:a[e 5 -

inputl = FALSE
input? = TRUE
g.out = TRUE
——————— State 6 -
inputl = FALSE

Let us first look at the set of states there are eight states. Now, you see instead of in1, in2,
out you have inputl, input2 and q dot out. This is going to be the same as before there is

no change except that we have the new variable names input1 input2 and q dot out.

(Refer Slide Time: 17:30)

Choose a state from the above (8-3): 1
Chosen state is: 1

sesnssssnsnssns AVATLABLE STATES sssssssssssss

inputl = TRUE
input2 = TRUE
q.out = TRUE

inputl = FALSE

zznsns State mmsssssaes

inputl = TRUE
input2 = FALSE

= FALSE

inputl

Choose a state from the above (#=3): 2

Let me quickly simulate the system each time we should be getting 4 possible choices.

Yes, this is how it is, if both the inputs are true then we should go to states where q dot

out should be false indeed so. If 1 of them is true we should go to the states where q dot

out should be true, yes indeed so. We have seen how to use modules in NuSMV code.

(Refer Slide Time: 18:12)

MODULE main
VAR
xi:

boolean; x2:boolean;

yi:
ql:
q2:
DEFINE
—= ZERO DELAY
fout :=

boolean; y2:boolean;
nand2(x1, x2);
nand2(y1l, ¥2);

ql.out xor q2.out;

MODULE nand2(ini,

VAR
out:

ASSIGN
—— UNIT DELAY

:= TRUE;

:= 1{inl & in2);

in2)

boolean;

init{out)
next {out)

Modules become more useful when we reuse components; for example in this circuit

there are 2 NAND gates connected to an XOR. Here, we will reuse the module for

NAND 2 times we define 4 variables x1, x2, y1, y2 and we will define 2 variables q1 and

gl which are of the nand2 type.

They take us input x1 and x2, g2 takes as input y1 and y2. We have assumed that there is
a 0 delay for this gate, f out is going to be the output of q1 and the output of g2 which is
written as q1 dot out XOR g2 dot out this shows how useful modules can be.

(Refer Slide Time: 19:14)

GMU nano 2.0.6 File: nand-demod.sav

MODULE nand2(inl, in2)

VAR
out: boolean;

ASSIGN

init(out) := TRUE;
next(out) t= ! (inl & in2);

MODULE main

VAR
x1: boolean; x2: boolean; ’
y1: boolean;
y2: boolean;
ql: nand2(x1, x2);
q2: nand2(yl, y2);
DEFINE
fout := ql.out xor g2.out;
ﬁel Help E'ﬂ'l'lleﬂul E Read File Prev Page E{n Text Cur Pos
b Exit Justify Where Is Next Page UnCut Text To Spell

Here, is the code where we have used the module nand2 twice. We will do the same
things as before.

(Refer Slide Time: 19:49)

x1 = FALSE
x2 = TRUE
yl = TRUE
y2 = FALSE

ql.out = FALSE
q2.out = FALSE

------- State 62 ———
x1 = FALSE
x2 = FALSE
y1l = TRUE
y2 = FALSE

ql.out = FALSE
g2.0ut = FALSE

------- State 6 ——
x1 = FALSE
x2 = TRUE
¥yl = FALSE
y2 = FALSE
ql.out = FALSE
g2.out = FALSE
—————— GtAtE 6 —————
x1 = FALSE
x2 = FALSE
yl = FALSE
y2 = FALSE

ql.out = FALSE
g2.out = FALSE

HapEres L EREERN sEEEEY HERFEEERE
NuSMV >

There are lot of states now, Why? because there are more variables. The variable are x1,
x2,y1, y2, ql dot out, g2 dot out. So, there are 2 times, 2 times, 2 times, 2 times, 2 times,
to 2 power six states which is 64.

(Refer Slide Time: 20:06)

MODULE main
VAR

x: boolean;
y: boolean;
ql:

nand2(x, q2.out);
gd: nand2(ql

DEFINE
== ZERO DELAY

fout := ql.out xor q2.out;

MODULE nand2(ini, in2)
VAR
out: boolean
ASSIGN
== UNIT DELAY
init(out) := TRUE;
next(out) := !(inl & in2);

Here is an another place where modules become very useful. In this circuit the output of
the first NAND gate becomes the input of the second, and the output of the second
becomes the input of the first this is a hierarchical design. How do we write this? x there
are 2 inputs x and y which are of the boolean type. There is a variable of type nand?2

which takes as input x and g2 dot out.

There is an another NAND variable q2 which takes as input q1 dot out and y. Let us now
try to simulate the transition system of this circuit.

(Refer Slide Time: 21:07)

GNU nano 2.0.6 File: nand-demaS.sav

MODULE nand2{inl, in2)

VAR
out: boolean;

ASSIGN
init{out) := TRUE;

next(out) = ! (inl & in2);

MODULE main

VAR
x: boolean;
y: boolean;
ql: nand2(x, g2.out);
q}:‘ nand2(ql.out, yli;
DEFINE

fout := gl.out xor g2.out;

Get Help WriteDut il Read File
Exit Justify Where Is

Modified

Cut Text g Cur Pos
UnCut Text To Spell

Here is the code there are 2 nand2 type variables 1 uses inputs x and g2 dot out and the

other uses inputs q1 dot and y.

(Refer Slide Time: 21: 35)

NUsSMV = go
NuSMV > print_reachable_states -v

HRRRRERRERRRRRRRRNRRRR R RRERERRRRRRARNAR R RRRRRERRERRNNRRRRERRERERRE

system diaseter: 2

reachable states: 16 (2*4) out of 16 (2%4)

------- State] ==
x = TRUE
y = TRUE
gl.out = TRUE
q2.out = TRUE
——————— State 1 ======
x = TRUE
y = FALSE
ql.out = TRUE
q2.0ut = TRUE
— State 3 ——
x = TRUE
y = TRUE
ql.out = FALSE
q2.0ut = TRUE
------- State 4 =meee-
x = TRUE
y = FALSE
ql.out = FALSE
q2.0ut = TRUE
——————— State § mm———
X = TRUE
y = TRUE

ql.out = TRUE
q2.0ut = FALSE

The reachable states are 16 in number because there were only 4 variables x, y, q1 dot out

and g2 dot out.
(Refer Slide Time: 21:50)

NuSMV > pick_state -i

y = TRUE
ql.out = TRUE
g2.out = TRUE

szzmmmsssssssmsms State messssssssssmsmes

Choose a state from the above (8-3):

|
What is the initial state? there are 4 initial states, firstly both q1 dot out and g2 dot out are

true initially.

(Refer Slide Time: 22:03)

MODULE main
VAR
x: boolean;
y: boolean;
ql: nand3(x, qZ
q2:
DEFINE
—— ZERD DELAY

fout := ql.out xor q2.out;

MODULE nand2(inil, in2)
VAR
out: boolean
ASSIGN
—= UNIT DELAY
init{out) := TRUE;
next{out) := !(inl & in2);

That is how we have defined q1 is of the nand 2 type it has a variable out of boolean type
which is initially true so both q1 dot out and g2 dot out would be true.
(Refer Slide Time: 22:17)

NuSMV = pick_state -i

- =% AVAILABLE STATES
=== ==== §{ate =ss=sssssssssssss
) memm———

fout = FALSE

x = TRUE

y = TRUE

ql.out = TRUE

g2.out = TRUE
zzzzzzzzzzzzz==== 51ate ssss==s=s=z==zzz==zz
1) memesmmecmmccescceceeeee

x = FALSE
=== = State =xmmm.
1) = eeee

x = TRUE

y = FALSE

Choose a state from the above (8-3):

-
Lets us take the first state where x and y are true and both q1 dot out and g2 dot out are
true. The next state would be determined as follows, the next of out should be not of the 2
inputs so the next of q1 dot out would be not of x and q2 dot out.

(Refer Slide Time: 22:47)

. ___|
3)

% = FALSE

Choose a state from the above (8-3): @

Chosen state is: @

NuSMV > simsulate -i -k -3

Error: string "-3" is not valid. An integer was expected.
NusMV > sisulate -i -k 3

........ Simulation Starting From State 1.1 sssssses

--------------- AVAILABLE STATES swsemsssmwsws

fout = FALSE
x = TRUE

y = TRUE
gl.out = FALSE
q2.o0ut = FALSE

1)

Let's see we have taken this the next of q1 dot out should be NAND of true and true
which is false. Let's try to stimulate and check this what do you expect? In the next state
gl dot out should be false that’s how it is. Similarly, the next of q2 dot should be NAND
of y and g1 dot out which is false as well, x and y have no restrictions so there are 4 states
all of them have q1 dot out and g2 dot out to be false. You can continue to check the

transition relation.

(Refer Slide Time: 23:55)

Simple circuit Hierarchical designs

Use of DEFINE Use of MODULE

We have seen that NuSMV code can be broken down into modules these modules can be

reused conveniently.

(Refer Slide Time: 30:08)

MODULE counter_cell{carry_in)
VAR
value:boolean;
ASSIGN
init(value) :=FALSE;
next{value) := value xor carry_im;
DEFINE

carry_out := carry_in k valus;

MODULE main
VAR
bit0: counter _call (TRUE) ;

bitl:counter_cell(bit0.carry_out);

bit2:counter_cell(biti.carry_out);

Let us now go to the next example, here is the NuSMV code of a 3 bit counter our task
now is to understand this code. There is a module counter cell which takes as input a
variable carry in. It has a variable value which is of boolean type. In the module main
there are 3 instantiations of module counter cell the first 1 bitO0 has a carry in of true
always bitl instantiates counter cell with a carry out of bit0, bit2 instantiates counter cell

with the carry out of bit1.

We will slowly try to understand this code by simulating this. What are the variables in
the main module bit0, bit1, bit2; bit0 is of the counter cell type. What are its variables? It
has variables value, carryout and it takes in a carry in. In bitO carry in is true initially
value of bit0 is false and carry out is determined by the define statement. So, the value of
carryout is given by the current values of carry in and value which is carry in and value 1

and 0is 0.

What about bit1? bitl is instantiated with bitO0 dot carryout. So, bitl dot carry in is 0
which is the same as this, bit1 dot value is false, bitl dot carryout is bitl dot carry in and
bitl dot value which is 0 and 0 which is 0. What about bit2? bit2 is instantiated with bit1
dot carryout, bitl dot carryout is 0. So, bit2 dot carry in is 0, bit2 dot value is 0 ,bit2 dot
carryout is carry in and value which is 0. This is going to be the initial state of the

transition system determined by this code initially these are the values.

The next set of values will be determined by the next assignment next of bit0 dot value is
going to be bit0 dot value x or bit0 dot carry in, which is 1 XOR is 0 1, bitO dot carry in is
always 1 because we have instantiated bit0 with counter cell of true. With these values
bit0 dot carryout becomes 1 because 1 and 1 is 1, bitl dot value is going to be 0 XOR 0
which is 0, bitl dot carry in is the same as bit0 dot carryout, bit1 dot carryout is AND of 1
and 0 is 0.

Let us come to bit2, bit2 dot value is 0 XOR 0 which is 0, bit2 dot carry in is the same as
bitl dot carryout, bit2 dot carryout is 0. You can see the values here from 0,0,0 we came
to 0,0,1 so there has been an addition of 1. What is the next step? In the next step bit0 dot

value would be XOR of 1 and 1 which is 0, bit0 dot carry in always 1.

With these values bit0 dot carryout is 0, bit1l dot value is XOR of 1 and 0 which is 1, bit1l
dot carry in is the same as bit0 dot carryout which is 0 and bit1 dot carryout is a AND of
these 2 which is 0. There is no change here XOR of 0,0 is 0, bitl dot carryout is 0 and
AND of these 2 is 0.

Similarly, if you compute the next step you will see that from 0 1 0 the values goto 01 1
and then it goesto 100,1 01,11 1sorry 110,11 1 and back to 0 0 0 so this code is
simulating a 3 bit counter. Try to simulate this code a NuSMV as an exercise.

(Refer Slide Time: 32:03)

Synchronous composition

All assignments to all MODULES occur simultaneously

(mare about this Later)

This is 1 more example where the use of modules is interesting. I would like to point out
an observation about this example in particular about the use of modules in this example.
This was the initial state, the said state is determined by the values of the variables these

are the variables in each of the modules.

The next state is determined by evaluating the next assignment in each of these modules.
Each of these modules move forward in the next state this is how the next state is
determined. This kind of scenario where all the modules take the next transition in 1 step
is said to be synchronous composition. All assignments to all modules occur

simultaneously, all assignments to all modules will occur in the next step.

We will later to see another form of composition called synchronous composition where
we can force only 1 of the module to take the next transition. However, here we have

defined bit0, bitl and bit2 to be variables of type determined by a module definition. In

such a case all of them will change in the next step and we will get a synchronous
composition. We will see more about this later in more detail.

(Refer Slide Time: 32:07)

Simple circuit Hierarchical designs

Use of DEFINE Use of MODULE

Counter

Synchronous composition
of modules

Let me now summarize what we have seen in this module, we started with the definition
of a simple circuit in NuSMV we saw the use of the keyword define. Then we moved on
to hierarchical designs of circuits where the use of the module keyword was important.
We finally saw an example of a 3 bit counter where we could explain the synchronous

composition of modules.

