
Model Checking
Prof. B. Srivathsan

Department of Computer Science and Engineering
Indian Institute of Technology – Madras

Lecture - 09
Hardware Verification Using NuSMV

In the previous module, we saw how to model simple transition systems in NuSMV. In

this module we will see how hardware circuits can be described in the tool NuSMV.

There are 3 parts to this module, in the first part we will see a simple circuit, in the

second and third parts we will see more interesting circuits.

(Refer Slide Time: 00:31)

Consider the circuit that we saw in unit 1, there are 2 inputs x and r, the output is

determined as NOT of XOR of x comma r the next value of the register r; the next value

of the input r is determined as XOR of x and r; the next value of x is non deterministic it

could be anything this is clearly described in this transition system.

The initial value of r is assumed to be 0; the initial value of x could be either 0 or 1. Once

the value of x and r are given the value of y gets determined this gives us 4 states. Let us

now try to describe the circuit using NuSMV. As usual it starts with module main. There

are 2 variables x and r both of them are of the boolean type these are the inputs. The

initial value of the variable r is false.

There are 2 things now we need to define the next value of r and we need to assign the

value y to be not of XOR of x comma r. Note that there is a difference between these 2

this says that once I had x and r the next value of r is XOR of x comma r. So, there is a

unit delay for the next value, however once I get x and r immediately the value of y is not

of XOR of x comma r for the value of y there is no delay.

How do we describe this? Here we say that next of r is x XOR r this is fine. What about

y? We cannot say next of y is not of XOR of x comma r because once the value of x and r

are given the value of is y is determined by the current values of x and r. To model such

things there is a key word define this says that the value of y would depend on the current

value of x and r as follows it is given as not of x XOR r.

We do not have to separately declare the variable y in the VAR block. We can directly

write y to be not of x XOR r. This variable does not play a part in determining the number

of states. The number of states is going to be determined by the variables here. Since x

and r are boolean there are 2 choices for x, 2 choices for r. Hence, the number of states is

going to be 4.

(Refer Slide Time: 03:53)

Let us now see a demo of this, i have written the code in the file circuit hyphen demo1

dot smv.

(Refer Slide Time: 04:33)

Let’s get into the interactive mode, you could directly give the name of the file in the

command for the interactive mode. So, you can write NuSMV minus int circuit hyphen

demo1 dot smv. If you remember we used to write read model, flatten hierarchy, encode

variables and build model. So, however there seems to be simple command go which will

do all these for us.

(Refer Slide Time: 04:48)

Let us now print the set of reachable states, print reachable states minus v. There are 4

states given by x equal to true, r equal to true, x equal to true r equal to false, x equal to

false r equal to true, x equal to false r equal to false. As you see this the states are

determined only by the variables in the VAR block.

(Refer Slide Time: 05:22)

Let us now simulate this transition system we pick the initial state rather and initial state.

There are 2 states one with by x equal to true or false the other one has r to be false and x

to be false as well. The value of y gets determined given the values of the variables x and

r. So, y was not of x r of x comma r, x r of true and false is true, not of true is false here r

is false. So, XOR of false and false is false, not of false is true this is as we expected. Let

me take this state and simulate for state 5 steps.

(Refer Slide Time: 06:08)

So, we started with the state x equal to true r equal to false and y is equal to false. The

next value of r should be XOR of true and false which is true.

(Refer Slide Time: 06:28)

If you see in the available states the value of r is true so if r is not given here you have to

look here. So, r is true however x could be either true or false so that's why get 2 states.

(Refer Slide Time: 06:44)

Let me choose 1, here the value of r is true, XOR of true and false is true so r is going to

be true here and x could be either true or false so you can continue doing this.

(Refer Slide Time: 06:59)

(Refer Slide Time: 07:05)

Each time we have 2 successor transitions that was an example of simple circuit. What

you need to remember is the use of the keyword define, define is useful whenever the

output value is determined by the current values of the inputs.

(Refer Slide Time: 08:51)

Let us now look at more examples of circuits, this is a simple NAND with two inputs. Let

us now describes this very simple circuit using NuSMV. Module main there are 2

variables in1 and in2 we have assumed that there is a 0 delay here, that is out is

determined as not of in1 and in2 immediately with 0 delay. So, we use the define

keyword what is the transition system representing this circuit?

There are 4 states determined by the values of the inputs and this is in1, this is in2, this is

out. Out is NAND of 0, 0 which is 1 here NAND of 1 and 0, AND of 1 and 0 is 0 and not

of 1 sorry not of 0 is 1. The only place where out is 0 is here where AND of 1 and 1 is 1

and not of 1 is 0. We have not assigned any initial states so all 4 of them are going to be

initial.

(Refer Slide Time: 08:54)

(Refer Slide Time: 09:10)

Let us simultaneously see a demo of this example in NuSMV. Here is the code lets us

start running it.

(Refer Slide Time: 09:20)

Let’s first get the set of reachable states there are 4 states depending on the values of

inputs in1 and in2.

(Refer Slide Time: 09:33)

What are the initial states? Since we have not defined what the initial state is any of them

could be the initial state this is what we have seen here.

(Refer Slide Time: 09:42)

What are the transitions? We have not defined anything here, the assigned block is

completely empty. So, each state can move to any of the 4 states there are all possible

transitions. Let us now see this in NuSMV.

(Refer Slide Time: 10:13)

We pick say state 0 and now simulate the 5 steps you will get all possible options all

possible 4 states as available no matter whatever what state you choose. This clearly

shows that the transition system corresponding to this code is this. Let us now slightly

complicate the code.

(Refer Slide Time: 12:09)

Instead of assuming that the output comes within a 0 delay I am now assuming that the

output comes after a unit delay. So, we define out in the VAR block we give some initial

value for the output and say that once I have my inputs in1 and in2, the next value of the

output is NAND of in1 and in2.

If a time t equal to 0 i have 1 and 0 as inputs, at time t equal to 1 the output will be

NAND of 1 and 0 which is 1. The output at time t equal to 2 would be determined by the

values of inputs at time t equals to 1 and so on. Let us now start building the transition

system, since there are 3 variables in the VAR block can you guess the number of states

in the transition system. It would be 2 times, 2 times to this eight states.

Since we have said that the initial value of out is true there are 4 initial states the once

where out is 1.

(Refer Slide Time: 12:12)

(Refer Slide Time: 12:27)

(Refer Slide Time: 12:28)

Let us now check this in the tool, here is the code. Let us start with printing the reachable

states, see there are 8 states depending on the values of the variables in1 in2 and out.

(Refer Slide Time: 12:45)

What are the initial states? There are 4 initial states all of them have the value of the

variable out to be true, if you remember i said if the value of a variable is not written here

then we have to look at the previous state. So, here this is a state where out is true, this is

the state with out equal to true this is yet again a state with out equal to true.

We have 4 initial states, what are the transitions? The transition function says that the

next value of output is given by not of in1 and in2, the next value of in1 and in2 is

nondeterministic. Let’s start from this state, the next value of output would be NAND of

1 and 1, which is 0.

There are 4 possible transitions because you just need the value of out to be 0 in1 and in2

could be any of the possibilities. Now, consider this state here the value of in1 and in2 is

0 and 0 AND of this is 0, NAND of this is 1 this would go to states where out is 1.

Similarly, for these 2 states the successors are the once where the out is 1. Here it’s the

same the only difference is here in the state where the value of in1 and in2 are both 1 so

AND of this is 1, NAND of this is going to be 0, so this goes to all these states.

(Refer Slide Time: 14:38)

Let us now check this, let us choose the state where in1, in2 and out are all true. There

were 4 possible transitions each of them would have out to be false. Let us choose this

state both in1 and in2 are true. So the successors should be the same set of states let us

check it, Yes indeed so.

(Refer Slide Time: 15:09)

If i take 2 then there will be 4 successors where the value of output is true. This is the

case so you can keep checking this.

(Refer Slide Time: 15:32)

Let me now give another way of writing the same code. We are going to define a new

module with the name NAND this is possible in NuSMV. We define a module NAND

with 2 inputs in1, in2. It has 1 output under the VAR block there is a variable out which is

boolean the next value of out is given by the statement how do we use this module in the

main.

In the main you define 2 variables input1 input2 and you can call the module nand2 of

input1, input2. Here the states are going to be determined by the values of input1, input2

and q, q has the variable out.

(Refer Slide Time: 16:39)

Let us see how NuSMV treats this code. Here is the code where NAND is defined as a

separate module the main module calls nand2.

(Refer Slide Time: 17:05)

Let us first look at the set of states there are eight states. Now, you see instead of in1, in2,

out you have input1, input2 and q dot out. This is going to be the same as before there is

no change except that we have the new variable names input1 input2 and q dot out.

(Refer Slide Time: 17:30)

Let me quickly simulate the system each time we should be getting 4 possible choices.

Yes, this is how it is, if both the inputs are true then we should go to states where q dot

out should be false indeed so. If 1 of them is true we should go to the states where q dot

out should be true, yes indeed so. We have seen how to use modules in NuSMV code.

(Refer Slide Time: 18:12)

Modules become more useful when we reuse components; for example in this circuit

there are 2 NAND gates connected to an XOR. Here, we will reuse the module for

NAND 2 times we define 4 variables x1, x2, y1, y2 and we will define 2 variables q1 and

q1 which are of the nand2 type.

They take us input x1 and x2, q2 takes as input y1 and y2. We have assumed that there is

a 0 delay for this gate, f out is going to be the output of q1 and the output of q2 which is

written as q1 dot out XOR q2 dot out this shows how useful modules can be.

(Refer Slide Time: 19:14)

Here, is the code where we have used the module nand2 twice. We will do the same

things as before.

(Refer Slide Time: 19:49)

There are lot of states now, Why? because there are more variables. The variable are x1,

x2, y1, y2, q1 dot out, q2 dot out. So, there are 2 times, 2 times, 2 times, 2 times, 2 times,

to 2 power six states which is 64.

(Refer Slide Time: 20:06)

Here is an another place where modules become very useful. In this circuit the output of

the first NAND gate becomes the input of the second, and the output of the second

becomes the input of the first this is a hierarchical design. How do we write this? x there

are 2 inputs x and y which are of the boolean type. There is a variable of type nand2

which takes as input x and q2 dot out.

There is an another NAND variable q2 which takes as input q1 dot out and y. Let us now

try to simulate the transition system of this circuit.

(Refer Slide Time: 21:07)

Here is the code there are 2 nand2 type variables 1 uses inputs x and q2 dot out and the

other uses inputs q1 dot and y.

(Refer Slide Time: 21: 35)

The reachable states are 16 in number because there were only 4 variables x, y, q1 dot out

and q2 dot out.

(Refer Slide Time: 21:50)

What is the initial state? there are 4 initial states, firstly both q1 dot out and q2 dot out are

true initially.

(Refer Slide Time: 22:03)

That is how we have defined q1 is of the nand 2 type it has a variable out of boolean type

which is initially true so both q1 dot out and q2 dot out would be true.

(Refer Slide Time: 22:17)

Lets us take the first state where x and y are true and both q1 dot out and q2 dot out are

true. The next state would be determined as follows, the next of out should be not of the 2

inputs so the next of q1 dot out would be not of x and q2 dot out.

(Refer Slide Time: 22:47)

Let's see we have taken this the next of q1 dot out should be NAND of true and true

which is false. Let's try to stimulate and check this what do you expect? In the next state

q1 dot out should be false that’s how it is. Similarly, the next of q2 dot should be NAND

of y and q1 dot out which is false as well, x and y have no restrictions so there are 4 states

all of them have q1 dot out and q2 dot out to be false. You can continue to check the

transition relation.

(Refer Slide Time: 23:55)

We have seen that NuSMV code can be broken down into modules these modules can be

reused conveniently.

(Refer Slide Time: 30:08)

Let us now go to the next example, here is the NuSMV code of a 3 bit counter our task

now is to understand this code. There is a module counter cell which takes as input a

variable carry in. It has a variable value which is of boolean type. In the module main

there are 3 instantiations of module counter cell the first 1 bit0 has a carry in of true

always bit1 instantiates counter cell with a carry out of bit0, bit2 instantiates counter cell

with the carry out of bit1.

We will slowly try to understand this code by simulating this. What are the variables in

the main module bit0, bit1, bit2; bit0 is of the counter cell type. What are its variables? It

has variables value, carryout and it takes in a carry in. In bit0 carry in is true initially

value of bit0 is false and carry out is determined by the define statement. So, the value of

carryout is given by the current values of carry in and value which is carry in and value 1

and 0 is 0.

What about bit1? bit1 is instantiated with bit0 dot carryout. So, bit1 dot carry in is 0

which is the same as this, bit1 dot value is false, bit1 dot carryout is bit1 dot carry in and

bit1 dot value which is 0 and 0 which is 0. What about bit2? bit2 is instantiated with bit1

dot carryout, bit1 dot carryout is 0. So, bit2 dot carry in is 0, bit2 dot value is 0 ,bit2 dot

carryout is carry in and value which is 0. This is going to be the initial state of the

transition system determined by this code initially these are the values.

The next set of values will be determined by the next assignment next of bit0 dot value is

going to be bit0 dot value x or bit0 dot carry in, which is 1 XOR is 0 1, bit0 dot carry in is

always 1 because we have instantiated bit0 with counter cell of true. With these values

bit0 dot carryout becomes 1 because 1 and 1 is 1, bit1 dot value is going to be 0 XOR 0

which is 0, bit1 dot carry in is the same as bit0 dot carryout, bit1 dot carryout is AND of 1

and 0 is 0.

Let us come to bit2, bit2 dot value is 0 XOR 0 which is 0, bit2 dot carry in is the same as

bit1 dot carryout, bit2 dot carryout is 0. You can see the values here from 0,0,0 we came

to 0,0,1 so there has been an addition of 1. What is the next step? In the next step bit0 dot

value would be XOR of 1 and 1 which is 0, bit0 dot carry in always 1.

With these values bit0 dot carryout is 0, bit1 dot value is XOR of 1 and 0 which is 1, bit1

dot carry in is the same as bit0 dot carryout which is 0 and bit1 dot carryout is a AND of

these 2 which is 0. There is no change here XOR of 0,0 is 0, bit1 dot carryout is 0 and

AND of these 2 is 0.

Similarly, if you compute the next step you will see that from 0 1 0 the values go to 0 1 1

and then it goes to 1 0 0, 1 0 1, 1 1 1 sorry 1 1 0, 1 1 1 and back to 0 0 0 so this code is

simulating a 3 bit counter. Try to simulate this code a NuSMV as an exercise.

(Refer Slide Time: 32:03)

This is 1 more example where the use of modules is interesting. I would like to point out

an observation about this example in particular about the use of modules in this example.

This was the initial state, the said state is determined by the values of the variables these

are the variables in each of the modules.

The next state is determined by evaluating the next assignment in each of these modules.

Each of these modules move forward in the next state this is how the next state is

determined. This kind of scenario where all the modules take the next transition in 1 step

is said to be synchronous composition. All assignments to all modules occur

simultaneously, all assignments to all modules will occur in the next step.

We will later to see another form of composition called synchronous composition where

we can force only 1 of the module to take the next transition. However, here we have

defined bit0, bit1 and bit2 to be variables of type determined by a module definition. In

such a case all of them will change in the next step and we will get a synchronous

composition. We will see more about this later in more detail.

(Refer Slide Time: 32:07)

Let me now summarize what we have seen in this module, we started with the definition

of a simple circuit in NuSMV we saw the use of the keyword define. Then we moved on

to hierarchical designs of circuits where the use of the module keyword was important.

We finally saw an example of a 3 bit counter where we could explain the synchronous

composition of modules.

