Model Checking
Prof. B. Srivathsan
Department of Computer Science and Engineering
Indian Institute of Technology — Madras

Lecture - 08
Simple Models in NuSMV
Welcome to Module 2 of this unit. In this module we will be seeing the format for

specifying transition systems in the tool NuSMV.
(Refer Slide Time: 00:21)

MODULE main
VAR
location: {11,12};

ASSIGN

init(lecatiomn) := 11;

pext(location) := case
(location = 11) :
{location = 12) :

eBacC;

Let us start with a simple transition system which has 2 states 11 and 12. 11 is the initial
state there is a transition from 11 to 12 and there is a transition from 12 back to 11. How do
we describe this transition system in the tool NuSMV?. NuSMV has a specific form for
writing a transition system. Each NuSMV code starts with the statement MODULE main

this is followed by a description of the states.

The description of the states is given the VAR block, here there are 2 states 11 and 12. A
variable called location is defined and it can take the values 11 and 12. This variable
location is of the enum type. So far this description says that the model has states given

by location equal to 11 and location equal to 12.

It now remains to describe the transitions this is done by the assign block. Firstly, we

have to specify that 11 is the initial state so the initial value of the variable location is 11.

What are the transition? If location is 11 then the next value of location is 12, if location is
12 then the next value of location is 11 this is what is written here. Next of location there

is a case and esac statement we have to write it within these 2.

If location is 11 then the next value of location will be 12, if location is 12 then the next
value of location is 11 this is the format for specifying transitions. This entire text
describes the simple transition system given by this picture.

(Refer Slide Time: 02:52)

GNU nano 2.0.6 File: intro-deso.sav

HODULE main

VAR
location: {l11,12};

ASSIGN
init(location) := 11;
next{location) i= case
location = 11 : 12;
location = 12 : 11;
esac;

gt Get Help WriteDut i Read File Prev Page Cut Text g Cur Pos
gl Exit Justify Where Is Next Page UnCut Text To Spell

Let us now see a demo of NuSMV. I have written the NuSMV code describing the simple
transition system in a separate file with the extension dot smv. Dot smv is the extension
for NuSMYV files let us now try to execute this code using NuSMV. If NuSMV has been
rightly installed you should be able to execute the following command. This will bring us
into the interactive mode of NuSMV.

(Refer Slide Time: 03:30)

srivathsan:Examples sris$ NuSMV -int

=% This is NuSMV 2.5.4 (compiled on Fri Now 23 21:36:86 UTC 2012)
=== Enabled addons are: compass

wsw For more information on NuSMV see <http://nusav.fbk.eus

s+« or email to <nusmv-users@list.fbk,.eu=,

ws% Please report bugs to <nusev-users@fbk.eus

sk Copyright (¢) 2018, Fondazione Brumo Kessler

wiw This version of NuSMV is linked to the CUDD library version 2.4.1
=== Copyright (c) 1995-2004, Regents of the University of Colorado

wex This wersion of NuSMV is linked to the MiniSat SAT solver.
*xx See http://www.cs.chalmers.se/Cs/Research/ForsalMethods/MiniSat
we¢ Copyright (c) 2003-2085, Niklas Een, Niklas Sorensson

NusMv = |}

The first task would be to read the model intro demo dot smv. The next command is
flatten hierarchy do not worry about what it means just enter this command. The next is
encode variables yet again do not worry what this means just enter it and the final task is

to build the model.

Okay, now we can try to simulate and see whether we have entered the right model. To
see what is the initial state described by the model and intro demo give this command
pick state minus I it says there is only one initial state and the state is given by location

equal to 11.

Let us now see, what are its transitions? For doing this we will give this command. We
will try to simulate the transition system this says that we will simulate the transition
system for 10 steps.

(Refer Slide Time: 05:02)

%k See http://www.cs.chalmers, sef/Cs/Research/FormalMethods/MiniSat
=e¢ Copyright (c) 2003-20@5, Niklas Een, Niklas Sorensson

NuSMV > read_model =i intro-demo.sav
NuSMV = flatten_hierarchy

NuSMV > encode_variables

NuSMV > build_model

NuSMV » pick_state -i

sessesssssseiis AVAILABLE STATES ssssssssssses

location 7 11

There's only one available state. Press Return to Proceed.
Chosen state is: @

NuSMV > simsulate =i =k 18

wewsssss Simulation Starting From State 1.1 swssssss

wwwensenenssess AVAILABLE STATES wswwswswwswws

location = 12

There's only one available state. Press Return to Proceed.|

We started with the initial state, which had location equal to 11 and from that there is only
one available state which is location equal to 12. Now, we pick location equal to 12 and
from that there is only one available state which is location equal to 11, from that there is
only one available state location equal to 12 and so on.

(Refer Slide Time: 05:27)

sexsseszassrsss AVAILABLE STATES seesrsesressas

location =

There's only one available state. Press Return to Proceed.
Chosen state is: @

raaan www AVAILABLE STATES swsssmsswwsss

location = 11

There's only one available state. Press Return to Proceed.
Chosen state is: @

wwsswsseweesses AYAILABLE STATES swswwwswwwwss

location = 12

There's only one available state. Press Return to Proceed,|]

So, this says this the path from 11 to 12 to 11 to 12 and so on. From this we can infer that
the model that we have given is the one that was shown in the picture.

(Refer Slide Time: 05:53)

location = 12

There's only one available state. Press Return to Proceed.
Chosen state is: @

wassnssssnssees AVATLABLE STATES sesssssssssss

location = 11

There's only one available state. Press Return to Proceed.

Chosen state is: @

NuSMV > print_reachable_states -v

HERRREEEEEERE LS 222 #Ee 222 #as Lt
system diameter: 2

reachable states: 2 (2°1) out of 2 (2*1)

——————— State] ==
location = 12
------- State 1 ==

location = 11
WNNEERESETERE ey 88, ey 88, INNEREESINY
NuSMV = |

You could also give this command, print reachable states minus v. This will say the
number of states and the description of states; this says that there are 2 reachable states,
one which has location equal to 12 and one which has location equal to 11 do not worry

about the other things.

As of now try to understand that this command print reachable states minus v will give us
the number of reachable states which is 2 and the description of the each of the states.
Let us now look at a slightly more complicated example. In addition to the location and
the simple transitions we have a variable x which is being checked for in this transition.

This transition can be taken only when x is less than 10.

While this transition is taken the value of variable is set to x plus 1. If you remember this
was called a program graph in the previous unit. Let us now see how to describe this
program graph using NuSMV. This is the code from before it just describes that there are

2 locations and there is a transition from 11 to 12 and transition from 12 to 11.

Now we need to incorporate the variable x. We need to first define x in the VAR block
NuSMV supports only bounded integers. So far x we need to give a bound I have given it
from zero to 100. In general NuSMV can take values from minus 2 power 31 plus 1 till 2

power 31 minus 1.

Next, we say that the initial value of x is 0, what about the transitions? The first change is
here instead of just saying when location is 11 go to 12 you need to say that when location
is 11 and x is less than 10 go to 12. Notice that these 2 cases do not exhaust all
possibilities in particular when location is 11 and x is bigger than or equal to 10 what do
we do? To say that we need to add this statement which says that if these 2 conditions

failed then do not change your location.

Finally we need to describe the next values for x, when location is 12 and x is strictly less
than 100. So, 100 is the bound for the variable x that's why we have to add this. If
location is 12 and x is strictly less than 100 then increase x by y, otherwise do not do
anything to the variable x.

(Refer Slide Time: 09:12)

MODULE main
VAR
locatiom: {11,12}

ASSIGN

imit(location) := 11;

next (location) := came
(location =

esac;

(Refer Slide Time: 09:15)

GNU nano 2.0.6

MODULE main
VAR

lecation: {11, 12};
x: 8 .. 108;

ASSIGN

init(location) := 11;

init(x) := &;

next(location) := case
(location = 11) & (x < 10) : 12;
(location = 12) : 11;
TRUE: location;

€5ac;
next(x) := case
(location = 11) : x;
(location = 12) & (x = 10@) : x + 1;
TRUE : x:
esac;

B Get Help gy WriteDut i Read File Prev Page gt Cut Text g Cur Pos
bl Exit 8] Justify Where Is Next Page gl UnCut Text To Spell

Let us now see a demo of this example the code has been saved under the file name pg
demo dot smv. Let us now execute this code using NuSMV. The first task is to go into the
interactive mode of NuSMYV, read model, flatten hierarchy, encode variables and then
build model. Now the information about the transition system written by the code and pg
demo dot smv is fully here.

(Refer Slide Time: 09:55)

srivathsan:Examples sri$ nano pg-demo.smv

srivathsan:Examples sri$ NuSMV -int

ssx This is MuSMV 2.5.4 (compiled on Fri Nov 23 21:36:86 UTC 2012)
»#+ Enabled addons are: compass

wsx For more information on NuSMV see <http://nusav.fbk.eu=»

wes OF email to <nusmv-users@list.fbk.eu»,

ssx Please report bugs to <nusav-users@fbk.eus

==+ Copyright (c) 2010, Fondazione Bruno Kessler

#*x This version of NuSMV is linked to the CUDD library version 2.4.1
==+ Copyright (c) 1995-20@4, Regents of the University of Colorado

#++ This version of NuSMV is linked to the MiniSat SAT solver.
wes 5S¢ MELp://ww.Cs.chalmers. se/Cs/Research/FormalMethods/MiniSat
wo Copyright (c) 2003-2085, Niklas Een, Niklas Sorensson

NuSMV > read_model =i pg-demo.sav
NuSMV = flatten_hierarchy

NuSMV > encode_variables

NuSMV > build_sodel

NusSMvV > §
"

To get the initial state we need to say pick state minus I. The initial state is given by
location equal to 11 and x equal to zero this is fine. Let us now simulate the transition
system for say 15 steps. From location 11 and x equal to 0 we went to 12 and x equal to 0.

(Refer Slide Time: 10:30)

NuSMV = read_model -i pg-demo.sav
NuSMV > flatten_hierarchy

MNuSMV = encode_variables

MUSMV > build_sodel

NuSMV > pick_state =i

sensssssnsnnnes AVATLABLE STATES sssssssswssns

location = 11

x=0
There's only one available state, Press Return to Proceed.
Chosen state is: @
NuSMV > simulate -i -k 15

........ Simulation Starting From State 1.1 seeesees

............... AVAILABLE STATES ssiases

location =
x =0

There's only one available state. Press Return to Proceed.j

Then the location goes back to 11 in the process the value of x becomes 1. The next is
there is no change to x but the location becomes 12 after this x becomes 2 and location is
1. So this keeps going on we have given 15 steps.

(Refer Slide Time: 10:56)
e
0) =

location = 11
Xx=4

There's only one available state. Press Return to Proceed.
Chosen state is: @
...............

location =

X= 4
There's only
Chosen state

location = 11
x=3

There's only one available state. Press Return to Proceed.f

Yeah, let us try to print what the reachable states are.

(Refer Slide Time: 11:19)

There's only one available state. Press Return to Proceed.

Chosen state is: @
NuSMV = print_reachable_states -v

HURRERERE HRARER
system diameter: 21

EERARRANY

ERSSERURNNNRNRARREEREEEE

reachable states: 2|1 (2%4,39232) out of 202 (2%7.65821)

State 1
location = 11
x=18

— State
location = 11
x=8

——————— State R
location = 11
x=2

2

——————— State § mm———
location = 11
=6

------- State 6 ===
location = 11
Xx= 4

------- State LACEEEEE
location = 11
x=9

——————— State 8 —
location = 11

There are 21 states can you figure out why there are 21 states? In location 11 the value of

x could be from zero till 10 because once it reaches 10 it cannot take the next value and

the value of x cannot be incremented. At location 12 the value of x can range from x equal

to 0 till x equal to nine. So this is 10 states in 12 and 11 states in 11 totally we get 21

states.

(Refer Slide Time: 12:00)

request=1
roady

request=1
busy

)

request=0
buay

)

request=0
d{ ready }---‘
U‘\"‘-‘.._._-",’

MODULE main

VAR
request: boolean;

status:

ASSIGN

{ready, busyl}
init{status) := ready;
next{status) := case

request : busy;
TRUE : {ready,busyl;

asac;

Let us now go to the next example, this time I will start with a NuSMV code and try to

build the transition system represented by this NuSMV code. There are 2 variables

request which is of the boolean type and state is which is of the enumeration type status

can take either ready or busy.

Given these 2 variables these are the states request can be either true or false represented
as request equal to 1 and request equal to 0 and state is can be either ready or busy so this
gives us 4 states. Here are the transitions, first the initial state is given by init of state is
ready. We have not specified what the init of request is, so there are 2 initial states one

with ready and request equal to 1 and the other with ready and request equal to 0.

Here is the definition of the transition relation the next of status is defined as follows. If
request is true status should become busy, otherwise status is either ready or busy. This is
what it says if request is true from ready the status should go to busy. However there is no
condition on the request so request could either be 1 or 0. Look at this state in this state
request is true so the next value for state is should be busy. So you will not have the

transition going to a state where ready is true.

From request equal to 1 and busy, you either go back to the state which is busy or you go
to another busy state however here the request is 0. The other condition states that if
request is not true you can go anywhere that means you have all possibilities from request
equal to zero you can go to all 4 states here, and here. If request is 0 you can go here,
here, here as well this one.

(Refer Slide Time: 14:49)

GNU nano 2.0.6

HODULE main

VAR
request: boolean;
status: {ready,busy};

ASSIGN
init(status) := ready;
next(status) := case
request : busy;
TRUE : {ready, busy};
esac;

Get Help WriteQut 8 Read File Prev Page Cut Text B¢ Cur Pos
Exit Justify Where Is Next Page UnCut Text To Spell

Let us now see a demo of this example the code has been saved under request hyphen,
busy, hyphen demo dot smv. Let us now run this. As usual we start with NuSMV minus
int to get into the interactive mode of NuSMYV, read model, flatten hierarchy, encode
variables, build model.

(Refer Slide Time: 15:26)

srivathsan:Examples sri$ nano request-busy-demo.sav
srivathsan:Examples sri$ NuSMV -int

s== This is NuSMV 2.5.4 (compiled on Fri Nov 23 21:36:06 UTC 2012)
#=++ Enabled addons are: compass

s+s For more information on NuSMY see <http://nusav.fbk.eus

wew or email to <nusmv-users@list.fbk,eus.

#»+ Please report bugs to <nusav-users@fbk.eu>

==x Copyright (c) 2018, Fondazione Bruno Kessler

#+= This version of NuSMV is linked to the CUDD library version 2.4.1
=== Copyright (c) 1995-2004, Regents of the University of Colorade

#xx This version of NuSMV is linked to the MiniSat SAT solver.
wew See httpi//www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
wsw Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson

MNuSMV > read_model =i request-busy-demo,smv
NuSMV = flatten_hierarchy

MNuSMV > encode_variables

NuSMV > build_sodel

NuSMV > |}

Let us first see the states, there are 4 states given by request equal to true status busy,
request equal to true status ready, request false status busy, request false status ready, this
is what we expected.

(Refer Slide Time: 15:59)
-

———— State 1 ———
request = TRUE
status = busy

——————— State P
request = TRUE
status = ready

——————— State 3 cocace
réquest = FALSE
status = busy

------- State 4 ———
request = FALSE
status = ready

#i# sRANN eLLi LIt

NUSMV > pick_state -i

T ——— AVAILABLE STATES swssssssnssns

request = TRUE
status = ready

sezz=ssssssssssss State ssessssssssssssss

request = FALSE

Choose a state from the above (8=1): |}

Let us now simulate this model, we first pick an initial state. There are 2 states request
equal to true status is ready and in the other one request is false nothing is given about the
status so this is how NuSMYV prints its states. If the value of a variable is not given here
then you should look at the previous state 1 represents request equal to false and status
equal to ready. Yet again this is what we expected we did not give an initial value for
request we just said that init of status is ready.

(Refer Slide Time: 16:51)

__
a) ==

request = TRUE
status = ready

State

request = FALSE
Choose a state from the above (8-1): @
Chosen state is: @

NuSMV = simulate -i -k 3
sesnnens Simulation Starting From State 1.1 sewsswns

wrnnsnnnnnnnens AVAILABLE STATES swssmwsumsnss

request = TRUE
status = busy

e e
request = FALSE

Choose a state from the above (8-1): §

Let us pick state 0 and simulate for 3 steps from here. From request true state is ready
there are 2 transitions, one transition leads to request equal to true and status equal to
busy, the other transition leads to request equal to false and value of status here is given
by this status equal to busy.
(Refer Slide Time: 17:21)

request = TRUE
status = busy

1) =——— s
request = FALSE
Choose a state from the above (8-1): 1
Chosen state is: 1

sosssnsnnnssnes AVAILABLE STATES sssssssssnsns

request = TRUE
status = busy

(Refer Slide Time: 17:24)
-

Choose a state from the above (8-1): 1
Chosen state is: 1
LEE LR

request = TRUE
status = busy

request = FALSE
status = busy

sazzzseszssssasas State sessssssassssssas

] —

status = ready

Choose a state from the above (8-3): §

Suppose I chose 1, I chose a state where request is false and from this state there are 4
possible transitions. Let me now choose a state with request equal to true and then there
are only 2 states as expected.

(Refer Slide Time: 17:36)

====s=z======s=z= Gigtp ======== —
2] mr———
request = FALSE
status = busy

status = ready

Choose a state from the above (8-3): @

Chosen state is: @

request = TRUE

request = FALSE

Choose a state from the above (8=1):

(Refer Slide Time: 17:39)

Coming next: checking requirements in NuSMV

So far in this module we have seen how to write transition systems in NuSMV. In the
next part we will see how we can check requirements on these modules using the tool
NuSMV. We will see 2 kinds of requirements but before that let we recap what executions
of a transition system are?

(Refer Slide Time: 18:06)

Executions

Look at this program graph this picture represents the transition system of this program
graph starting from the initial value x equal to 0. Since, there is a single path there is only
1 execution in this transition system. An execution is just a path of this transition system.

(Refer Slide Time: 18:35)

Executions

! 4 4

requast=0 roquest=i requast=0
ready ready ready

]

request=0 request=1 requast=0
busy busy ready

|". requast=0 roquest=0 requaat=0
| : g ready busy ready T

U — U request=1 request=1 request=0
busy busy ready

requeste=]l request=0 requeat=0
busy busy roady

Consider this transition system there are many executions I have listed some of them. The
first execution starts from the initial state request equal to zero ready, it goes to request
equal to O busy, goes back to request equal to zero ready then takes the transition the

request equal to 1 busy stays here and so on.

The next execution starts from the initial state request equal to 1 ready, goes to request
equal to 1 busy, goes to request equal to 0 busy, comes back to request equal to 1 busy

goes again to request equal to 0 busy and so on. This execution starts from request equal
to 0 ready and stays there forever.

(Refer Slide Time: 19:39)

Transition system satisfies a requirement

means

all its executions satisfy the requirement

When we say that a transition system satisfies a requirement we mean that all its
executions satisfy the requirement. We will see 2 kinds of requirements and this concept
will become clearer. The first kind of requirement that we are going to look at is called G.
G stands for global.

(Refer Slide Time: 20:09)

Requirement type 1: G

= [, x=0

o Lx=0 | G(x >= 0)

l, x=1

TS of above PG with initial value =0

satisfies G (x >= 0)

We will explain this using the example of the program graph. When we write G followed
by an expression we are checking if this expression is true globally. This is the single
execution of this transition system starting from x equal to 0. In this state x is bigger than
or equal to zero, in this state x is bigger than or equal to zero here again it is true and so

on.

Therefore, this requirement checking G x bigger than or equal to zero is true on this
execution. Since this is the only execution it is also true on the transition system. We will
say that this program graph satisfies G x greater than or equal to zero when the initial
value of x is zero.

(Refer Slide Time: 21:11)

x x
. 4 !
. —— request=0 request=1 request=0
G (request=0) [resdy] { ready J [ready J

regquest=0 request=1 request=0
busy busy ready

request=d request=0 request=0
roeady ready ready

requestsl requests=1 request=0
busy busy ready

TS does not satisfy

G (request=0) [request=1] [request=0] nquut-o]

buay roady ready

Let us see another example, suppose I write the requirement that G request equal to O.
Look at this execution is request equal to zero always during this execution no because
here request becomes 1. So this execution does not satisfy the requirement G of request
equal to 0. Similarly, this execution also does not satisfy the requirement G request equal
to 0. The final one here indeed satisfies G request equal to 0 because in every state of this

execution request is 0.

However, the transition system on the whole does not satisfy this requirement because

there are executions which do not satisfy this requirement. Let me summarize what we

saw in the previous 2 examples. Suppose, this is an execution of a transition system, the
execution satisfies G of a boolean expression if that expression evaluates to true in all its

states.

Given an execution and an expression you should evaluate and see if it is true in all the
states. If it is true then this execution is set to satisfy g of expression and the transition
system satisfies G of expression if all its executions satisfy g of expression.

(Refer Slide Time: 23:09)

Execution satisfies G (expr) if

expr evaluates to T in all its states

-0—0—0—0—0—0— -
| r 1

Transition system satisfies G (expr) if

all its executions satisfy G (axpr)

(Refer Slide Time: 23:11)

Checking the G requirement: NuSMV demo

We will now see how we can check the G requirement using NuSMV. NuSMV will
automatically check whether the requirement G is true on a model.

(Refer Slide Time: 23:29)

GNU nano 2.0.6

HODULE main
VAR

lacation: {11, 12};

x: @ .. 100
ASSIGN

init(lecation) := 11;

initix) := @;

next(location) := case
(location = 11) & (x < 18) : 12;
(location = 12) : 11;
TRUE: Llocation;
e5ac;

next{x) := case

(location = 11} : x;
(location = 12) & (x < 18@) : x + 1;
TRUE : x;

esac;

Get Help WriteQut il Read File Prev Page Cut Text g Cur Pos
Exit Justify Where Is MNext Page UnCut Text To Spell

Recall that this is the code for the program graph given in the slides. We want to check if
G of x bigger than or equal to 0 is true on this model. First let's get to the interactive
model as usual and read the model. To check the requirement, this is the command say
check 1tl spec minus p and within quotes write your requirement do not worry about what

1tl spec means?

Just assume that this is the command for checking if G x bigger than or equal to zero is
true on the model given by pg demo dot smv.

(Refer Slide Time: 24:44)

irivathsan:Examples sri$ nano pg-demo.smv

irivathsan:Examples sri$ NuSMV -int

oo This is NuSMV 2.5.4 (compiled on Fri Nov 23 21:36:06 UTC 2012)
Enabled addons are: compass

For more information on NuSMY see <http://nusav.fbk.eu»

ms or esail to <nusmv-users@list.fbk,eus,

ma Please report bugs to <nusav-users@fbk.eus

ex Copyright (c) 2018, Fondazione Bruno Kessler

ax This version of NuSMV is linked to the CUDD library version 2.4.1
e Copyright (c) 1995-2884, Regents of the University of Colorado

mx This version of NuSMV is linked to the MiniSat SAT solver.
mw See http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
ma Copyright (c) 2003-2885, Niklas Een, Niklas Sorensson

USMV > read_sodel -i pg-demo.sav
luSMV = flatten_hierarchy

{uSMV = encode_variables

{USMV > build_model

{USMV > check_ltlspec -p "G (x >=@)"
-~ specification G x >= @ is true
usMy = ||

. __|
Let us now enter, it says that the specification is true which is what we expected. Let us

now look at the other example which was the one with the request and busy.

(Refer Slide Time: 25:03)

srivathsan:Examsples sri$ nano pg-demo.smv

srivathsan:Examples sri$ NuSMV -int

#xx This is NuSMV 2.5.4 (compiled on Fri Nov 23 21:36:06 UTC 2012)
#+% Enabled addons are: compass

ssx For more information on NuSMV see <http://nusav.fbk.eu»

wen or email to <nusmv-users@list.fbk,eus.

»s» Please report bugs to =nusev-users@fbk.eus

#+= Copyright (c) 2010, Fondazione Bruno Kessler

=== This version of NuSMV is linked to the CUDD library version 2.4.1
#== Copyright (c) 1995-2084, Regents of the University of Colorado

=22 This version of NuSMV is linked to the MiniSat SAT solver.
See http://www.cs.chalmers,se/Cs/Research/FormalMethods/MiniSat
wss Copyright (c) 2003-2085, Niklas Een, Niklas Sorensson

NuSMV > read_model =i pg-demo.sav
MuSMV = flatten_hierarchy

NuSMV = encode_variables

NuSMV > build_sodel

NuSMV > check_ltlspec =p "G (x >=@)"

-- specification G x »= @ is true

NuSMV = guit

srivathsan:Examples sri$ nano request-busy-demo.sav []

(Refer Slide Time: 25:05)

GNU nano 2.8.6 File: request-busy-demo.smv

HODULE main

VAR
request: boolean;
status: {ready,busy};

ASSIGN
init(status) = r
next(status) := case
request : busy;
TRUE : {ready, busy};
€5ac;

B Get Help WriteQut g Read File Prev Page Cut Text g8 Cur Pos
bl Exit Justify Where Is Mext Page UnCut Text To Spell

This example we want to check if G of request equal to 0 is true.

(Refer Slide Time: 25:33)

NuSMY > read_model -i pg-demo.sav
NuSMV > flatten_hierarchy

NuSMV = encode_variables

NuSMV > build_model

NuSMV > check_ltlspec -p "G (x >=@)"

== specification G x »= 8 is true

NuSMV > quit

srivathsan:Examples sri$ nano request-busy-demo.sav
srivathsan:Examples sri$ NuSMV -int

#+% This is NuSMV 2.5.4 (compiled on Fri Nov 23 21:36:06 UTC 20812)
=== Enabled addons are: compass

wss For more information on NuSMV see <http://nusav.fbk.eu>

=== or email to <nusmv-users@list.fbk.eu=.

=« Please report bugs to <nusav-users@fbk.eu>

=++ Copyright (c) 2019, Fondazione Bruno Kessler

ws This version of NuSMV is linked to the CUDD library version 2.4.1
#+# Copyright (c) 1995-2004, Regents of the University of Colorade

=== This version of NuSMV is linked to the MiniSat SAT solver.
sk See http://www.cs.chaleers.se/Cs/Research/ForsalMethods/MiniSat
=== Copyright (c) 2003-2005, Niklas Een, Niklas Serensson

NuSMV = read_sodel -1 request-busy-demo.smv
NuSMV = flatten_hierarchy

NuSMV = encode_variables

NuSMV > build_model

NUSMV =

|
Let's first read the model to check if G of request equal to zero is true we have to give the
following command check Itl spec minus p G of request equal to should not a zero. Since
request is a boolean we should say request equal to false.

(Refer Slide Time: 25:56)

Rightly, so NuSMV says that the specification is false on the model. Moreover, NuSMV
will give you an execution on which this requirement is false. In particular it gives us the
execution that starts from request equal to true status equal to ready and goes to request
equal to false status equal to busy and loops here. Clearly this execution starts from

request equal to true which already violates the property given by the requirement.

NUSMV > read_model -i pg-demo.sav

NuSMV = flatten_hierarchy

NUSMV > encode_variables

NuSMY > build_model

NuSMV = check_ltlspec -p "G (x »=@)"

== specification G x »= @ is true

NuSMV > quit

srivathsan:Examples sri$ nano request-busy-demo.sav
srivathsan:Examples sri$ NuSMV -int

ex= This is NuSMV 2.5.4 (compiled on Fri Nov 23 21:36:86 UTC 2012
w=xx Enabled addons are: compass

«xx For more information on NuSMV see <http://nusav.fbk.eu>
e or email to =nusmv-users@list.fbk,eu=,

wxx Please report bugs to <nusav-users@fbk.eus

«+= Copyright (c) 2010, Fondazione Bruno Kessler

«xx This version of NuSMV is linked to the CUDD library versionm 2.4.1
wee Copyright (c) 1995-2084, Regents of the University of Colorado

&xx This version of NuSMV is linked to the MiniSat SAT solver,
wx See http://www.cs.chaleers.se/Cs/Research/ForsalMethods/MiniSat
exe Copyright (c) 2003-2085, Niklas Een, Niklas Serensson

NuSMV = read_sodel -i request-busy-demo.smv
NuSMV = flatten_hierarchy

NuUSMV > encode_variables

NuSMV > build_model

NuSMV = check_Lltlspec -p "G (request = FALSE)™

(Refer Slide Time: 26:41)

We saw how to check the G requirement on NuSMV models. Let us now look at another

type of requirement which is called F. F stands for future, lets understand F through

examples.

Checking the G requirement: NuSMV demo

(Refer Slide Time: 28:12)

Requirement type 2: F

::-xtixczu

TS of above PG with initial value x=0

satisfies F (x >= 5)

Consider the same program graph again and suppose I write the requirement F of x
bigger than or equal to 5 this means that sometime during this execution the value of x
becomes bigger than or equal to 5, x bigger than equal to 5 is not true here, not true here,

not true here, not true here but true here in fact it would become true sometime before.

This execution satisfies F x bigger than or equal to 5 because sometime during this
execution x becomes bigger than or equal to 5 we do not care what happens before or
after. In some state x bigger than or equal to 5 should be true. Since this is the only
execution the transition system of the above program graph with the initial value x equal

to O satisfies the requirement F x bigger than or equal to 5.

Let see the other example, suppose for this transition system I asked the requirement F of
request equal to 1 what about this? If you look at this execution sometime during this

execution request equal to 1 is true.

So, this execution satisfies the requirement F of request equal to 1 what about this?
Already in the first state request is 1. So, this execution also satisfies the requirement F of
request equal to 1. What about this execution? It always stays in 0, so this execution does
not satisfy the requirement F request equal to 1.

(Refer Slide Time: 29:19)

x
. ' .
reguest=0 request=1 reguest=0
ready ready ready

I J I

request=0 request=1 requast=0
buay busy raady

I J |

request=(0 request=0 request={ o
ready Taady raady

[rn-qn!nt-l J {ﬂlqulul-l] [r.qu.l..l-u]
TS does not satisfy b“l'f bT:r u].dxr

E (request=1) requast=1 requast=0 requast=0
busy ready roady

Hence, the transition system does not satisfy the requirement.
(Refer Slide Time: 30:01)

Execution satisfies F (expr) if

expr evaluates to T in one of its states

~-0—0—0—0—0—0— -

Transition system satisfies F (expr) if

all its executions satisfy F (expr)

An execution satisfies F of an expression if the expression evaluates to true in one of its
states. We do not care what happens elsewhere, if there is one state where expression is
true the execution is set to satisfy F of this boolean expression. And a transition system
satisfies the requirement F of an expression if all its executions satisfy F of expression.

(Refer Slide Time: 30:05)

Checking the F requirement: NuSMV demo

Let us now see a demo of checking the F requirement on our NuSMV models. Let us start
with program graph example, we do the initial steps as before the command for checking
the requirement F is similar, Check ltl spec minus p and now give the requirement F, F of
x bigger than or equal to 5 as expected NuSMV says that the specification is true.

(Refer Slide Time: 30:57)

irivathsan: Examples sri$ nano pg-demo.smv

irivathsan:Examples sri$ NuSMV -int

wex This is NuSMV 2.5.4 (compiled on Fri Nov 23 21:36:06 UTC 2012)
s Enabled addons are: compass

ms For more information on NuSMV see <http://nusev.fbk,eu=

s or email to =nusmv-users@list. fbk.eus.

exx Please report bugs to <nusav-users@fbk.eu=

Copyright (c) 2019, Fondazione Bruno Kessler

e This version of NuSMV is linked to the CUDD library version 2.4.1
ww Copyright (c) 1995-2004, Regents of the University of Colorade

= This version of NuSMV is linked to the MiniSat SAT solver.
ek See http://www.C5.chalmers.se/Cs/Research/FormalMethods/MiniSat
wx Copyright (c) 2003-2003, Niklas Een, Niklas Sorensson

{uSMV > read_sodel -1 pg-demo.sav
usMY > flatten_hierarchy

1USMV > encode_variables

USMV = build_model

uSMV > check_ltlspec -p “F (x >=5)"
- gpecification F x »= 5 15 true
JUSMV =

Let us now look at the case of the request and busy example.

(Refer Slide Time: 31:06)

GMU nano 2.0.6
HMOOULE main

VAR
request: boolean;
status: {ready,busy};

ASSIGN
init{status) := ready;
next(status) = case
request : busy;

TRUE : {ready, busy};
esac;

| Read 13 limes |
g Get Help WriteQut Gl Read File gl Prev Page Cut Text ! Cur Pos
fd Exit Justify Where Is g Next Page UnCut Text To Spell

Now, let us check the specification check 1tl spec minus p F request equal to true and it

says that the specification is false and the counter example is the loop where request is
false always this is what we saw in our slides.

(Refer Slide Time: 32:04)

Coming next: Combining G and F

We have seen a demo of the G and the F requirement more interesting requirements can
be written by combining G and F. We will look at one example consider the same
transition system the requirement that we asked now reads as follows G of request equal

to 1 implies F of status equal to busy. In English this says whenever request is 1 status

becomes busy sometime in the future.

Consider the first execution in this state request is 0. So, the expression will automatically
be through we do not have to do anything in this state. In this state yet again request is 0
we go to the state with the request equal to 1. If request equal to 1 then the requirement
says that in the future of that state status should become busy which is true for this

execution.

So, this execution would satisfy this requirement, what about this execution? request is 1
here. Does the status become busy in the future? Yes it does. Request becomes 1 here.
Does the status become busy in the future? Yes. One can count this state itself as its
future. Request is one here, Does the status become busy in the future? Yes. Because the

state already has the status to be busy.

Let me say that this execution satisfies the requirement. What about this execution? Since
request is 0 always we have nothing to check, so this execution also satisfies the
requirement. We have seen that these 3 executions satisfy this requirement. I claim that
the entire transition system satisfies this requirement that means all the executions satisfy
the requirement that whenever request becomes true, the status becomes busy in the
future.

(Refer Slide Time: 34:39)

v ' '
requast=0_ requast=1 ragquest=0
ready ready ready

I I I

requast=0 requast=1 request=0
busy busy ready

I I I

G (request=1 => F status=busy [

At
I I I

request=1 request=1 request=0
busy busy

TS satisfies l l I

G (request =>F (status=busy)) [request=1] [Hqun:-o] {rlquen-o]

busy ready ready

It is not easy to check this requirement just by looking at this example this is where the
use NuSMV becomes important. We will run this example on NuSMV, I have already
read the model request busy demo and have executed the preliminary commands so the

model is already built.

Let us now check the specification G request equal to true implies. The implies NuSMV
is written as a hyphen and a greater than implies F status equal to busy NuSMV says that
this requirement is true on the model.

(Refer Slide Time: 35:38)

srivathsan:Examples sri$ NuSMV -int

#x= This is NuSMV 2.5.4 (compiled on Fri Nov 23 21:36:86 UTC 2812)
#+= Enabled addons are: compass

san For moré information on MNuSMV see <http://nusav. fbk,eu»

wsx or email to <nusmv-users@list.fbk,eus,

ss= Please report bugs to <nusav-users@fbk.eu=

#oiox Copyright (c) 2018, Fondazione Bruno Kessler

wsx This version of NuSMV is linked to the CUDD library version 2.4.1
=== Copyright (c) 1965-2084, Regents of the University of Colorado

waw This version of NuSMV is linked to the MiniSat SAT solver.
=xx See hitp://www.cs.chaleers,se/Cs/Research/FormalMethods/MiniSat
wxx Copyright (c) 2083-20@5, Niklas Een, Niklas Sorensson

NuSMV > read_model =i request-busy-demo.smv

NuSMV > flatten_hierarchy

NuSMV > encode_variables

NuSMV = build_model

NuSMV > check_ltlspec -p "G (request=TRUE -> F status=busy)"

-- specification G (request = TRUE -> F status = busy) is true
NuSMV = §

The goal of this module was to introduce you to writing models and specifications in the
tool NuSMV. In the rest of the unit we will see how to write more complicated models.

More complicated requirements would be taken care of later during the course.

