
Model Checking
Prof. B. Srivathsan

Department of Computer Science and Engineering
Indian Institute of Technology – Madras

Lecture - 08
Simple Models in NuSMV

Welcome to Module 2 of this unit. In this module we will be seeing the format for

specifying transition systems in the tool NuSMV.

(Refer Slide Time: 00:21)

Let us start with a simple transition system which has 2 states l1 and l2. l1 is the initial

state there is a transition from 11 to l2 and there is a transition from l2 back to l1. How do

we describe this transition system in the tool NuSMV?. NuSMV has a specific form for

writing a transition system. Each NuSMV code starts with the statement MODULE main

this is followed by a description of the states.

The description of the states is given the VAR block, here there are 2 states l1 and l2. A

variable called location is defined and it can take the values l1 and l2. This variable

location is of the enum type. So far this description says that the model has states given

by location equal to 11 and location equal to l2.

It now remains to describe the transitions this is done by the assign block. Firstly, we

have to specify that l1 is the initial state so the initial value of the variable location is l1.

What are the transition? If location is l1 then the next value of location is l2, if location is

l2 then the next value of location is l1 this is what is written here. Next of location there

is a case and esac statement we have to write it within these 2.

If location is l1 then the next value of location will be l2, if location is l2 then the next

value of location is l1 this is the format for specifying transitions. This entire text

describes the simple transition system given by this picture.

 (Refer Slide Time: 02:52)

Let us now see a demo of NuSMV. I have written the NuSMV code describing the simple

transition system in a separate file with the extension dot smv. Dot smv is the extension

for NuSMV files let us now try to execute this code using NuSMV. If NuSMV has been

rightly installed you should be able to execute the following command. This will bring us

into the interactive mode of NuSMV.

(Refer Slide Time: 03:30)

The first task would be to read the model intro demo dot smv. The next command is

flatten hierarchy do not worry about what it means just enter this command. The next is

encode variables yet again do not worry what this means just enter it and the final task is

to build the model.

Okay, now we can try to simulate and see whether we have entered the right model. To

see what is the initial state described by the model and intro demo give this command

pick state minus I it says there is only one initial state and the state is given by location

equal to l1.

Let us now see, what are its transitions? For doing this we will give this command. We

will try to simulate the transition system this says that we will simulate the transition

system for 10 steps.

(Refer Slide Time: 05:02)

We started with the initial state, which had location equal to l1 and from that there is only

one available state which is location equal to l2. Now, we pick location equal to l2 and

from that there is only one available state which is location equal to l1, from that there is

only one available state location equal to l2 and so on.

(Refer Slide Time: 05:27)

So, this says this the path from l1 to l2 to l1 to l2 and so on. From this we can infer that

the model that we have given is the one that was shown in the picture.

(Refer Slide Time: 05:53)

You could also give this command, print reachable states minus v. This will say the

number of states and the description of states; this says that there are 2 reachable states,

one which has location equal to l2 and one which has location equal to l1 do not worry

about the other things.

As of now try to understand that this command print reachable states minus v will give us

the number of reachable states which is 2 and the description of the each of the states.

Let us now look at a slightly more complicated example. In addition to the location and

the simple transitions we have a variable x which is being checked for in this transition.

This transition can be taken only when x is less than 10.

While this transition is taken the value of variable is set to x plus 1. If you remember this

was called a program graph in the previous unit. Let us now see how to describe this

program graph using NuSMV. This is the code from before it just describes that there are

2 locations and there is a transition from l1 to l2 and transition from l2 to l1.

Now we need to incorporate the variable x. We need to first define x in the VAR block

NuSMV supports only bounded integers. So far x we need to give a bound I have given it

from zero to 100. In general NuSMV can take values from minus 2 power 31 plus 1 till 2

power 31 minus 1.

Next, we say that the initial value of x is 0, what about the transitions? The first change is

here instead of just saying when location is l1 go to l2 you need to say that when location

is l1 and x is less than 10 go to l2. Notice that these 2 cases do not exhaust all

possibilities in particular when location is l1 and x is bigger than or equal to 10 what do

we do? To say that we need to add this statement which says that if these 2 conditions

failed then do not change your location.

Finally we need to describe the next values for x, when location is l2 and x is strictly less

than 100. So, 100 is the bound for the variable x that's why we have to add this. If

location is l2 and x is strictly less than 100 then increase x by y, otherwise do not do

anything to the variable x.

(Refer Slide Time: 09:12)

(Refer Slide Time: 09:15)

Let us now see a demo of this example the code has been saved under the file name pg

demo dot smv. Let us now execute this code using NuSMV. The first task is to go into the

interactive mode of NuSMV, read model, flatten hierarchy, encode variables and then

build model. Now the information about the transition system written by the code and pg

demo dot smv is fully here.

(Refer Slide Time: 09:55)

To get the initial state we need to say pick state minus I. The initial state is given by

location equal to l1 and x equal to zero this is fine. Let us now simulate the transition

system for say 15 steps. From location l1 and x equal to 0 we went to l2 and x equal to 0.

(Refer Slide Time: 10:30)

Then the location goes back to l1 in the process the value of x becomes 1. The next is

there is no change to x but the location becomes l2 after this x becomes 2 and location is

1. So this keeps going on we have given 15 steps.

(Refer Slide Time: 10:56)

Yeah, let us try to print what the reachable states are.

(Refer Slide Time: 11:19)

There are 21 states can you figure out why there are 21 states? In location l1 the value of

x could be from zero till 10 because once it reaches 10 it cannot take the next value and

the value of x cannot be incremented. At location l2 the value of x can range from x equal

to 0 till x equal to nine. So this is 10 states in l2 and 11 states in l1 totally we get 21

states.

(Refer Slide Time: 12:00)

Let us now go to the next example, this time I will start with a NuSMV code and try to

build the transition system represented by this NuSMV code. There are 2 variables

request which is of the boolean type and state is which is of the enumeration type status

can take either ready or busy.

Given these 2 variables these are the states request can be either true or false represented

as request equal to 1 and request equal to 0 and state is can be either ready or busy so this

gives us 4 states. Here are the transitions, first the initial state is given by init of state is

ready. We have not specified what the init of request is, so there are 2 initial states one

with ready and request equal to 1 and the other with ready and request equal to 0.

Here is the definition of the transition relation the next of status is defined as follows. If

request is true status should become busy, otherwise status is either ready or busy. This is

what it says if request is true from ready the status should go to busy. However there is no

condition on the request so request could either be 1 or 0. Look at this state in this state

request is true so the next value for state is should be busy. So you will not have the

transition going to a state where ready is true.

From request equal to 1 and busy, you either go back to the state which is busy or you go

to another busy state however here the request is 0. The other condition states that if

request is not true you can go anywhere that means you have all possibilities from request

equal to zero you can go to all 4 states here, and here. If request is 0 you can go here,

here, here as well this one.

(Refer Slide Time: 14:49)

Let us now see a demo of this example the code has been saved under request hyphen,

busy, hyphen demo dot smv. Let us now run this. As usual we start with NuSMV minus

int to get into the interactive mode of NuSMV, read model, flatten hierarchy, encode

variables, build model.

(Refer Slide Time: 15:26)

Let us first see the states, there are 4 states given by request equal to true status busy,

request equal to true status ready, request false status busy, request false status ready, this

is what we expected.

(Refer Slide Time: 15:59)

Let us now simulate this model, we first pick an initial state. There are 2 states request

equal to true status is ready and in the other one request is false nothing is given about the

status so this is how NuSMV prints its states. If the value of a variable is not given here

then you should look at the previous state 1 represents request equal to false and status

equal to ready. Yet again this is what we expected we did not give an initial value for

request we just said that init of status is ready.

(Refer Slide Time: 16:51)

Let us pick state 0 and simulate for 3 steps from here. From request true state is ready

there are 2 transitions, one transition leads to request equal to true and status equal to

busy, the other transition leads to request equal to false and value of status here is given

by this status equal to busy.

(Refer Slide Time: 17:21)

(Refer Slide Time: 17:24)

Suppose I chose 1, I chose a state where request is false and from this state there are 4

possible transitions. Let me now choose a state with request equal to true and then there

are only 2 states as expected.

(Refer Slide Time: 17:36)

(Refer Slide Time: 17:39)

So far in this module we have seen how to write transition systems in NuSMV. In the

next part we will see how we can check requirements on these modules using the tool

NuSMV. We will see 2 kinds of requirements but before that let we recap what executions

of a transition system are?

(Refer Slide Time: 18:06)

Look at this program graph this picture represents the transition system of this program

graph starting from the initial value x equal to 0. Since, there is a single path there is only

1 execution in this transition system. An execution is just a path of this transition system.

(Refer Slide Time: 18:35)

Consider this transition system there are many executions I have listed some of them. The

first execution starts from the initial state request equal to zero ready, it goes to request

equal to 0 busy, goes back to request equal to zero ready then takes the transition the

request equal to 1 busy stays here and so on.

The next execution starts from the initial state request equal to 1 ready, goes to request

equal to 1 busy, goes to request equal to 0 busy, comes back to request equal to 1 busy

goes again to request equal to 0 busy and so on. This execution starts from request equal

to 0 ready and stays there forever.

(Refer Slide Time: 19:39)

When we say that a transition system satisfies a requirement we mean that all its

executions satisfy the requirement. We will see 2 kinds of requirements and this concept

will become clearer. The first kind of requirement that we are going to look at is called G.

G stands for global.

(Refer Slide Time: 20:09)

We will explain this using the example of the program graph. When we write G followed

by an expression we are checking if this expression is true globally. This is the single

execution of this transition system starting from x equal to 0. In this state x is bigger than

or equal to zero, in this state x is bigger than or equal to zero here again it is true and so

on.

Therefore, this requirement checking G x bigger than or equal to zero is true on this

execution. Since this is the only execution it is also true on the transition system. We will

say that this program graph satisfies G x greater than or equal to zero when the initial

value of x is zero.

(Refer Slide Time: 21:11)

Let us see another example, suppose I write the requirement that G request equal to 0.

Look at this execution is request equal to zero always during this execution no because

here request becomes 1. So this execution does not satisfy the requirement G of request

equal to 0. Similarly, this execution also does not satisfy the requirement G request equal

to 0. The final one here indeed satisfies G request equal to 0 because in every state of this

execution request is 0.

However, the transition system on the whole does not satisfy this requirement because

there are executions which do not satisfy this requirement. Let me summarize what we

saw in the previous 2 examples. Suppose, this is an execution of a transition system, the

execution satisfies G of a boolean expression if that expression evaluates to true in all its

states.

Given an execution and an expression you should evaluate and see if it is true in all the

states. If it is true then this execution is set to satisfy g of expression and the transition

system satisfies G of expression if all its executions satisfy g of expression.

(Refer Slide Time: 23:09)

(Refer Slide Time: 23:11)

We will now see how we can check the G requirement using NuSMV. NuSMV will

automatically check whether the requirement G is true on a model.

(Refer Slide Time: 23:29)

Recall that this is the code for the program graph given in the slides. We want to check if

G of x bigger than or equal to 0 is true on this model. First let's get to the interactive

model as usual and read the model. To check the requirement, this is the command say

check ltl spec minus p and within quotes write your requirement do not worry about what

ltl spec means?

Just assume that this is the command for checking if G x bigger than or equal to zero is

true on the model given by pg demo dot smv.

(Refer Slide Time: 24:44)

Let us now enter, it says that the specification is true which is what we expected. Let us

now look at the other example which was the one with the request and busy.

(Refer Slide Time: 25:03)

(Refer Slide Time: 25:05)

This example we want to check if G of request equal to 0 is true.

(Refer Slide Time: 25:33)

Let's first read the model to check if G of request equal to zero is true we have to give the

following command check ltl spec minus p G of request equal to should not a zero. Since

request is a boolean we should say request equal to false.

(Refer Slide Time: 25:56)

Rightly, so NuSMV says that the specification is false on the model. Moreover, NuSMV

will give you an execution on which this requirement is false. In particular it gives us the

execution that starts from request equal to true status equal to ready and goes to request

equal to false status equal to busy and loops here. Clearly this execution starts from

request equal to true which already violates the property given by the requirement.

(Refer Slide Time: 26:41)

We saw how to check the G requirement on NuSMV models. Let us now look at another

type of requirement which is called F. F stands for future, lets understand F through

examples.

(Refer Slide Time: 28:12)

Consider the same program graph again and suppose I write the requirement F of x

bigger than or equal to 5 this means that sometime during this execution the value of x

becomes bigger than or equal to 5, x bigger than equal to 5 is not true here, not true here,

not true here, not true here but true here in fact it would become true sometime before.

This execution satisfies F x bigger than or equal to 5 because sometime during this

execution x becomes bigger than or equal to 5 we do not care what happens before or

after. In some state x bigger than or equal to 5 should be true. Since this is the only

execution the transition system of the above program graph with the initial value x equal

to 0 satisfies the requirement F x bigger than or equal to 5.

Let see the other example, suppose for this transition system I asked the requirement F of

request equal to 1 what about this? If you look at this execution sometime during this

execution request equal to 1 is true.

So, this execution satisfies the requirement F of request equal to 1 what about this?

Already in the first state request is 1. So, this execution also satisfies the requirement F of

request equal to 1. What about this execution? It always stays in 0, so this execution does

not satisfy the requirement F request equal to 1.

(Refer Slide Time: 29:19)

Hence, the transition system does not satisfy the requirement.

(Refer Slide Time: 30:01)

An execution satisfies F of an expression if the expression evaluates to true in one of its

states. We do not care what happens elsewhere, if there is one state where expression is

true the execution is set to satisfy F of this boolean expression. And a transition system

satisfies the requirement F of an expression if all its executions satisfy F of expression.

(Refer Slide Time: 30:05)

Let us now see a demo of checking the F requirement on our NuSMV models. Let us start

with program graph example, we do the initial steps as before the command for checking

the requirement F is similar, Check ltl spec minus p and now give the requirement F, F of

x bigger than or equal to 5 as expected NuSMV says that the specification is true.

(Refer Slide Time: 30:57)

Let us now look at the case of the request and busy example.

(Refer Slide Time: 31:06)

Now, let us check the specification check ltl spec minus p F request equal to true and it

says that the specification is false and the counter example is the loop where request is

false always this is what we saw in our slides.

(Refer Slide Time: 32:04)

We have seen a demo of the G and the F requirement more interesting requirements can

be written by combining G and F. We will look at one example consider the same

transition system the requirement that we asked now reads as follows G of request equal

to 1 implies F of status equal to busy. In English this says whenever request is 1 status

becomes busy sometime in the future.

Consider the first execution in this state request is 0. So, the expression will automatically

be through we do not have to do anything in this state. In this state yet again request is 0

we go to the state with the request equal to 1. If request equal to 1 then the requirement

says that in the future of that state status should become busy which is true for this

execution.

So, this execution would satisfy this requirement, what about this execution? request is 1

here. Does the status become busy in the future? Yes it does. Request becomes 1 here.

Does the status become busy in the future? Yes. One can count this state itself as its

future. Request is one here, Does the status become busy in the future? Yes. Because the

state already has the status to be busy.

Let me say that this execution satisfies the requirement. What about this execution? Since

request is 0 always we have nothing to check, so this execution also satisfies the

requirement. We have seen that these 3 executions satisfy this requirement. I claim that

the entire transition system satisfies this requirement that means all the executions satisfy

the requirement that whenever request becomes true, the status becomes busy in the

future.

(Refer Slide Time: 34:39)

It is not easy to check this requirement just by looking at this example this is where the

use NuSMV becomes important. We will run this example on NuSMV, I have already

read the model request busy demo and have executed the preliminary commands so the

model is already built.

Let us now check the specification G request equal to true implies. The implies NuSMV

is written as a hyphen and a greater than implies F status equal to busy NuSMV says that

this requirement is true on the model.

(Refer Slide Time: 35:38)

The goal of this module was to introduce you to writing models and specifications in the

tool NuSMV. In the rest of the unit we will see how to write more complicated models.

More complicated requirements would be taken care of later during the course.

