
Model Checking
Prof. B. Srivathsan

Department of Computer Science and Engineering
Indian Institute of Technology – Madras

Lecture - 50
Introduction to BDDs

Welcome to Unit 11 of this curse. In this unit, we will be looking at a data structure for

representing transition systems and the name of this data structure is going to Binary Decision

Diagrams (BDDs) in short. In first module, I will give you an introduction to BDDs.

(Refer Slide Time: 00:30)

A short recap of what we have been seen in this course. Model checking is essentially, modeling

systems as finite state machines and modeling requirements in a formal language and using

automatic tools to check properties against these finance state machines. So, in our course we

have been looking at transition systems these are diagrams with states and transitions. We have

seen what kind of properties can be checked on transition systems in particular we have been

looking at the LTL and CTL properties.

We have also seen the tool NuSMV that can read transition systems in a format of this tool and

we can also write LTL and CTL properties and NuSMV can automatically check these properties

on the transition system specified. In the last unit, we had seen that when we have multiple

modules NuSMV the number of stage in the transition system increase exponentially. If you have

one Boolean variable there are two states.

If you have two one Boolean variable there are four states. If you have n Boolean variable there

are two Rn states and so on. Clearly, we need an efficient way to represent transition systems

since they are huge. In this unit we will look at

(Refer Slide Time: 02:22)

a data structure for representing transition systems efficiently. In this module I will introduce you

to this data structure called Binary Decision Diagrams. In module two we will see some

operations that can be done on BDDs we will see algorithm for operations on BDDs and in

module three I will explain how BDDs can be used to represent transition systems. This unit the

reference would the book Logic in Computer Science, second edition, by Huth and Ryan, Section

6.1 to 6.3.

(Refer Slide Time: 03:10)

Let us start with what are called Boolean functions. During the course of the unit we will

understand why we are talking about Boolean functions. What are Boolean variables? These are

variables that can take values zero or one in other words false or true. Suppose x and y are

Boolean variables, f of x, y a function given by x + y is a Boolean function. Now, this plus is a

Boolean addition. So 0 + 1 is zero, 0 + 1 is one, 1 + 0 is one, 1 + 1 would still be one.

So, this is the logical or so if look at it as false or false, it could be false. False or true will be

true, true or false will be true and true or true will be true. And this is the Truth table

corresponding to this Boolean function. When x and y are zero, f of x, y is zero, zero and one

will be one, one and zero will be one. And one and one will be one. So, this is the standard Truth

table for the Logical OR.

(Refer Slide Time: 4:44)

Now, let me give you an example of one more Boolean function. A Boolean function takes as

input some Boolean variables and outputs either zero or one for each combination of inputs. So,

this is a function defined as f of x, y equal to x dot y. Now what is this dot operation on Boolean

variables? Zero dot zero is defined to be zero. Zero dot one is zero. One dot zero is defined to be

zero. At one dot one is defined to be one.

So what is your guess? What is this dot? It is nothing but the Logical And. And here is the Truth

table corresponding to AND.

(Refer Slide Time: 5:37)

Now let me define yet another operation on Boolean variables f of x equal to x bar is another

Boolean function. Now how do we define this bar operation? Zero bar is defined to be one and

one bar is defined to be zero. So this is just the Logical NOT and here is the Truth table

representation of this Boolean function.

(Refer Slide Time: 6:09)

In general, if you have n Boolean variables a Boolean function is just a function that takes a

valuation of x one to x n and maps it to either zero or one. It is a map from some valuation of x

one to x n to zero or one and you can define Boolean functions using these basic Boolean

operations plus, dot and bar. For example, this is a function x bar plus y. So this is a function

over three variables. It says x dot y plus y bar dot z.

So this is formed out of these operations. Similarly f 3 of x ,y, z is x plus y bar dot z the whole

bar.

(Refer Slide Time: 7:16)

So, we have seen what Boolean functions are so far. Let us now see how to represent Boolean

functions so far it is simple. So here is a Boolean function f of x, y, z is x dot y plus y bar dot z.

Now you can represent it using a truth table. So, this column is for x, this column is for y this

column is for z and this is for f. Now if x is zero and y is zero x dot y is zero. Now what about y

bar dot z? Since z is zero y bar dot z is going to be zero well and zero plus will be zero.

Let us see one more. X dot y, zero dot zero will be zero plus y bar dot z will be one dot one

which will be one. So this value is one. Similarly, you can check for the other n case. So, this is

called a Truth table for this Boolean function. You just map each valuation to the corresponding

value which f associates it with. There is another way of looking at this Truth table this is called

the Binary Decision Tree. So the nodes are x y and z. So, this is the root node x.

This dashed line says that the value associate to x is zero. The thick line says that the value

associated to x is one. Similarly, here at y the dashed line says that the value associated to, y is

zero. The thick line says that the value associated to y, is one. So, this path is zero, zero, zero and

for zero, zero, zero f is zero. Now, what is this path zero for x, zero for y, and one for z. So, zero,

zero, one is one. Now, zero, one, zero is zero and so it is zero here. Zero, one, one is zero again.

So, zero, one, one is zero again. Now what about this one, zero, zero is zero. One, zero, one is

one. One, one, zero is one and one, one, one is one. So, this is just another representation of the

Truth table in the form of a Tree. Each path corresponds to an entry here. So, these two are

equivalent representations for this Boolean function.

(Refer Slide Time: 10:27)

What are the Operations that you can do on truth tables? We know operations that can be done on

functions plus dot and the bar. Now, since we are representing Boolean functions using Truth

tables we should be able to do these operations on Truth tables as well. Let us see how to do it.

So, consider this Boolean function which is the f of x, y, z that we show the compliment of it. So,

that is x dot y plus y bar z whole bar. Now, this is the Truth Table for f.

How do we get the Truth table for g? You look at the corresponding entry in f and just take the

compliment if it is zero put it to be one. If it is one here put it to be zero. Zero here put it to be

one. Zero here put it to be one. Now these three are one so here you will get zero, zero, zero. So,

given the truth table of f you can compute the truth table of f bar by just swapping the values in

this column. So, this is a simple concept.

(Refer Slide Time: 11:52)

How about doing a plus? So this is a truth table for s. This is the truth table for function g now

we define h to be this plus this. Now how the truth table of h look like. We look at the

corresponding values in this one and this one and just do a plus. So, zero plus one will be one.

One plus one would be one again. Zero plus zero, zero. Since here everything is zero we just

copy this truth table here. So what you did?

You systematically went through each entry and the corresponding entry here and then filled it

by doing a plus here as well as I mean by doing a plus of this and this. This is how you do plus of

two truth tables. Similarly, how do you do a dot? You look at corresponding entries and instead

of doing a plus you just do a dot. So, zero dot zero is zero. One dot zero will be zero and so on.

Wherever there is zero you will get zero, zero, zero and here the last three are one and once, one,

one.

(Refer Slide Time: 13:21)

What you need to observe? If you are representing Boolean functions using truth tables what is

the space required? If there are n variables note that there are two power n rows and each row

has n plus one pits. So, here there were three variables there were eight rows and each row has

four pits. So for n variables the truth table needs to store two power n dot n plus one bits. And for

computing operations you need to visit each entry of the truth table.

So, if you have n variables you need to look at two power n values. Note that sequential circuits

can be modeled using Boolean functions. Sequential circuits are gates with possible feedback

and they can be modeled using Boolean functions and a circuit with hundred variables will need

more than two power hundred bits. And two power hundred is a huge number clearly we need a

better way of representing Boolean functions.

(Refer Slide Time: 15:10)

This is what we are going to see next an efficient representation for Boolean formulas. So

consider the Boolean formula x bar dot y bar this is the binary decision three representations.

This is equivalent to the truth table. Zero, zero goes to one because x bar dot y bar zero bar is one

and y bar is, I mean zero bar is one again. So, one bar one may be one. Zero one is will go to

zero. One zero will go to zero and one, one will go to zero again.

Fine, can we represent this in a better way? Firstly, there is no point of having three zeros it is

enough if we have one representation for the bit one and one representation for the bit zero. Now,

here this y both it is successor edges go to the same node if you noticed this decision point see

this is a decision mode right. At this node if you choose to take one it goes here if you choose to

take zero it will go to the node.

Here if you choose to take zero you go here. If you choose to take one you go here. Clearly this

decision is unnecessarily. What can you do to just remove this node and say that whenever x is

one the value will be zero no matter what y is. This says that if x is zero then depending on

whether y is zero or one there are differences but however when x is one we don’t care what y is

the value assigned will always be zero.

So, this is a more efficient way of representing it because we have lesser space. This kind of a

diagram is called a Binary Decision Diagram. Let us see some more examples. Look at this

Binary Decision three. Let us see if we can make it smaller. First step, reduce all zeros to one

zero and all ones to one, one just keep one leaf to zero and one leaf. Now this z it is zero child

goes to zero and it is right I mean the one child goes to one.

Look at this both of them goes to zero both it is just goes to zero. Here the edge the dash edge

goes to zero and the thick edge so the dash edge represents the decision point at z is sing zero it

goes to zero and this thick edge goes to one. Now what about this thing both of them go to one.

So when you reduce the leafs to this situation this is how the edges will look like. Now clearly

this decision point and this decision point are unnecessary.

Once you come to this y and you say that when you take one you have to go to zero. Similarly,

from here when you take one you have to go one. So, you can remove this z and this z you are

left with this z and this z but note that the subtrees are isomorphic, in the sense look at this node.

This z and this node z it is dashed edge goes to zero and the thick edge goes to one. Here again it

is dash edged goes to zero and its thick edge goes to one.

So, these two are identical so why do we need to have two representations for them instead we

can just keep one representation for this particular tree and what do we get? We get one

representation here and twice dash edge goes to this z. Similarly, this y dash edge goes here and

the rest are same. This one dash edge goes here and the thick edge goes here and this ones one

edge. So, I can also call it the one edge this goes to zero similar to this you just copy it.

Now, these usages less nodes then this one and this is a Binary Decision Diagram. So, these kind

of diagrams are called Binary Decision Diagrams note that these two are called Reduced BDDs,

BDDs is what? Binary Decision Diagram you look at this. This has the potential to be further

reduced because this is an unnecessary node. Similarly, this is an unnecessary node. After doing

the reductions we got this.

This cannot be reduced further see this y is different from this y because it is one edge goes to

zero. Here it is one edge goes to one. So you cannot say that these two are identical. So, here we

cannot merge any nodes so these are reduced BDDs similarly this is again a reduced in the –In

general such diagrams are called BDDs.

(Refer Slide Time: 21:31)

Now, we informally show to reduce. Let me give you the reduction rules. The rule C1 says we

can remove duplicate leaves if you have multiple zero leaves and multiple zero ones we just

make it to be one leave for zero and one leave for one. Removal of redundant tests, we were

removing this unnecessary decision points and C3 removal of duplicate sub-trees. If there are

two sub-trees which are identical we can just keep one representation fault.

(Refer Slide Time: 22:10)

Let us go through the examples. So, what did we do first we applied the C1 rule to get one

representation for the leaves and one representation for the one. I mean one representation for

zero and one representation for one. On this we applied C2. See there are redundant tests. This z

and this z are redundant tests so by applying C2 we got –we remove this z’s. So from this y we

went directly to one and from this y on one we went directly to zero and we apply the C3 to

remove duplicate Sub-Trees.

We just kept one Sub-Tree to represent these two which were identical. So, after applying these

rules we get the reduced BDD. Similarly, here we applied C1 first to get one representative for

the leave and then we just had to apply C2 we could not reduce this any further. So this was a

reduced BDD.

(Refer Slide Time: 23:24)

That is the introduction to this simple complex called BDDs. What do we want? We want to

represent Boolean functions. A standard way of doing this is to use Truth tables. However, we

can do better by making use these BDDs. We have seen some examples and then there are ways

of reducing these BDDs using the rules that we show. C1, C2, C3. They are very intuitive rules.

Finally, they represent the same Boolean function.

The same truth table. For example, here this says that on an x if x is one, no matter what y is the

value assigned is zero. Similarly, here it says that when x is one and y is one no matter what z is

we get one if x is zero and y is one, no matter what z is we get zero. So, this is an introduction to

BDDs we will see in module III why we are interested in Boolean functions. We will be

representing transition systems as Boolean functions and then for representing Boolean functions

we will use reduced BDDs.

So, this ends the introduction to BDDs. You should be able to construct a binary decision tree

from a Truth table and then apply the reduction rules to get the reduced BDDs if you know this

you can jump to the next module.

