Model Checking
Prof. B. Srivathsan
Department of Computer Science and Engineering
Indian Institute of Technology — Madras

Lecture - 14
Invariants
In the last module we gave a mathematical meaning to the word properties. We said that a

property is nothing but a set of words. We are now going to look at different kinds of
properties. The first kind of properties that we are going to look at are called invariants.
In this module we will see what invariants are we will see how they can be checked in
NuSMV and finally we will look at an algorithm that checks invariant properties on
models.

(Refer Slide Time: 00:44)

Atomic propositions AP = { p,,p, |

Pyt request=1 p,: status=busy

[} { PP}
request=1 requast=1
raady buay

_[request=0 requast=0]

We will use 2 running examples in this module, the first one is our favorite transition
system here with the request and the status variables. We will use the same atomic
propositions that we used last time p1 and p2, p1 says that request is 1 and p2 says that
the status is busy. Here are the states and the corresponding evaluations of the atomic
propositions.

(Refer Slide Time: 01:18)

Atomic propositions AP = { p,,p,.p..p, |

Pyt pri.location=crit Pyt prl.location=wait

v pr2.location=crit Py pr2.location=wait

The second example that we will use in this module is the mutual exclusion. Here are 2
processes along with a shared variable y which is there to ensure mutual exclusion. We
had seen this example in the previous unit, the transition system that we are interested in

is the interleaving of these 2 program graphs.

Each program can be in 4 possible states, either it is non-critical after a while it moves to
a waiting state where it wants to move to the critical section. It can move to the critical
section only if certain conditions are satisfied and in the process it makes some
assignments. It stays in its critical section for a while and then when it is about to exit it

moves to an exciting state.

From the exciting state it goes back to the non-critical location and in the process makes
an assignment. The transition system that we are interested in is the interleaving of these
2 program graphs. Let us define some atomic propositions, p1 is the proposition which
says that the first process is in its critical section, p2 is the proposition which says that the
first process is currently in its wait location and finally p4 is the atomic proposition which

says that process 2 is in its wait location.

We have chosen these atomic proposition so the properties that we would be giving on
this transition system would depend on these atomic propositions. So, these 2 are the
running examples for this module. Let us now see some example properties.

(Refer Slide Time: 03:27)

Aromic propositions AP = | p.p, | AP-INT = set of infinite words over PouerSen(AF)
Py Tequest=l P atatus=busy

Property I: p, is always truc

[AsA Ay - € APINF | each A, containa p, |

Property 1 is written as G p,

Above TS does not satisfy G p,

Here is the request busy transition system, let us look at the property that we have been
looking at before as well the property which says that p1 is always true. The property is
of a special form it says that something should always be true. In particular the word that

belong to this property should satisfy the fact that each set contains p1.

The way we write this is G of p1, as we had seen before this transition system does not
satisfy G pl. Let us now see a demo of NuSMV where we give it this transition system
and we check this property. Let us see what the output of NuSMYV is.

(Refer Slide Time: 04:36)

. |
srivathsan:NuSV sris nano reguest=busy=-demo. sav

srivathsan:NuSMV sri$ NuSMY -int reguest-busy-demo.sav

wes This is MuSMV 2.5.4 (compiled on Fri Nov 23 21:36:86 UTC 2912)

was [nabled addons are: compass

wes For more information on MUSMV see <http://nusev. fbk. eus

wee or email to «nusav-usersflist. fok.ews.

wes Please report bugs to <nusev-usersgfbk,eus

s== Copyright (c) 2018, Fondazione Brumo Kessler

wee This version of NuSMV is linked to the CUDD library version 2.4.1
s=s Copyright (c) 1995-2884, Regents of the University of Calorado

#es This wversien of MuSMV {3 Linked to the MiniSat SAT salver
wen See hULp:/ /e, 08, Cholme re, 5&/Cs/Research/ Forma\Methods MiniSy
wsn Copyright (c) 2083-2003, Niklas Een, Niklas Sorensson

NuSMV = go
NuSHV > check_ltlspec -p "6 (nequest=TRUE]"
G request = TRUE is false
ed by the following execution sequence
LTL Counterexangle
terexanple

reguest = TRUE
status = ready
-» State: 1.2 <-
reguest = FALSE
stotus = busy
=+ State: 1.3 =-
reguest = TRLUE
status = resdy
Lodp starts here
= State: 1.4 «
stotus = Budy
> State: 1.5 <
NuSMV = ||

Here is the code, I will run this file now. No problems so far, let us now check the Itl
specification, G of request equal to 1 the way we write it in NuSMV is request equal to
true. It says that this specification is false and it says why it is false. It is giving us an
example of an execution which does not satisfy this property. Let us look at the

counterexample, it starts with a state request equal to true and status is ready.

And goes to the state where request equal to false status is busy, goes to request equal to
true and then there is some loop, however already request has been made false in this
state. So, this clearly says that there is an execution where the property is not satisfied.
The thing to note here is that given a model and a property of this kind NuSMV checks if
this property is true on that model and if it is not true it returns an execution which does

not satisfy this property.

Let us now look at another example of a property. This property says that p1 and not p2 is
always true, what are the words that satisfies this property. The words that satisfy should
contain p1 in every set and there should not be p2 anywhere in any of these sets. So, there
is only one word which satisfies this property and that word contains the atomic

proposition p1 in every set.

This is the description AO, A1, A2 such that each Ai satisfies p1 and not p2. How do we
write this property? This property is written as G p1 and not p2 inside the G there is a
Boolean expressions formed out of the atomic propositions. We claimed that this
transition system does not satisfy this property. Let us check what NuSMV says, and if it
says NO, what is the counterexample?

(Refer Slide Time: 07:55)

wen This version of NuSMV is linked to the (U0 Library version 2.4.1
s Copyright (c) 1995-2084, Regents of the University of Colorado

wan This version of NuSMV is linked to the MiniSat SAT solver,
wan o6 WULR:/ v, G, Ehalners, 56/Ci/Research/Forng Methods/MiniSat
wss Copyright [c] 2003-2005, Niklas Een, Miklas Sorensson

NuSMV > go
NuSHV > check_Ltlspec -p "G (request=TRUE)"
— specification G request = TRUE is false
as demonstrated by the following execution sequence
Trace Desc on: LTL Counterexanple
ounterexanple
tLls=
request = TRUE
Stotus & resdy
=» State: 1.2 =-
reguest
status = busy
=» State: 1.3 <-
request = TRUE
status = ready
Loop starts here
» State: 1.4 <

> State: 1.5 <

NuSMV > check_Ltlspec -p "G (request=TRUE & !{status=busy))®

== specification G (request = TRUE & !(status = busy)) is false
ed by the following exscution sequence

LTL Counterexanple
example

FALSE

Status = ready
> State: 1.2 <
NuSMV = |

Let us now check the Itl specification G of requests equal to true and p2 was the atomic
proposition which said that status is busy. We want not of status equal to busy, it gives a
very short counterexample and the counterexample is a loop in the state where request is
false and status is ready. This state clearly does not satisfy the expression request equal to
true and not of status equal to busy, because both of them need to be true request is false

here so already pl1 is false.

So, this state does not satisfy the expression inside G and the execution formed by
looping around the state does not satisfy the property.

(Refer Slide Time: 09:12)

Atomic propositions AP = | p,,p; |

set of infinite words over PowerSen(AP)
P\ Toquest=1 p;: status=busy

Property I p, A —p; is always true

[AA Ay - € APINF | each A, satisfies p, A =y |

Property 2 is written as G p; A =p,

Abave TS does not satisfy G p, A —p,

This is the execution given by NuSMV as you see it does not contain p1.

(Refer Slide Time: 09:22)

Invariants

AP-INF = set of infinite words over PowerSet{AP)

Property: ¢ is always true

(where ¢ is a boolean expression over AP)

{AA A, € AP-INF | each A; satishes ¢ }

A property of the ahove form is called invariant property

It is written as G b

If you saw the previous 2 properties they were of a special form they asked if something
is always true and the something was a Boolean expression over the atomic propositions.
For example here we asked if p1 and not p2 is always true, in this property we asked if p1
is always true. Properties of this kind where we asked if a formula phi is always true

where phi is a Boolean expression over the atomic propositions.

This kind of a property is called invariant and the way it is written is G of the Boolean

expression. Let me repeat, properties of the form which ask for some Boolean expression

is always true are called invariant properties and the way we write them is using the G
operator G phi.
(Refer Slide Time: 10:43)

Atomic propositions AP = { p,,p,, 0004 |

py: prl.location=crit piprl.location=wait

Py pr2.location=crit P pr2.location=vait

Above TS satisfies invariant property G = (p, A py)

Let us come to the other example, we want to ask if the transition system of the mutual
exclusion problem satisfies the invariant property G of not of p1 and p3. Is it the case that
in every execution not of pl and p3 is true, that means p1 says that process one is in
critical location, p3 says that process 2 is in the critical location, p1 and p3 together say
that process 1 and process 2 are in its critical location together and the not says that it is

not the case that both processes are in their critical location.

So, this property asks is it the case that in every execution in every state both process 1,
process 2 cannot simultaneously be in their critical location. Let us check this property
using NuSMV.

(Refer Slide Time: 10:51)

File: mutex-desol.ssv
MODULE threadiy)

VAR
location: {mc, w, ¢, exit};

ASSIGN
init{location) = nc;
next(location) := case
locationsnc : {nc, w};
locat ion=w & y>8: ¢}
locationse @ {c, exith)
location=exit : ncj
TRUE: location;
esac;
nextiy) := case
location=w & y: ¥ - 1;
location=exit & y=8: y+l;
TRUE: y;
esac;
MODULE maim
VAR
y-sain: 8..1;
prgl: process thread(y-main);
prgd: process thresd(y-main);
ASSIGN
initiy-main)i= 1}

Get Help WriteQut i Read File Prev Page Cut Text Cur Pos
Exit Justify A Where Is Mext Page Unlut Text To Spell

Here is the code that describes the program graphs, there are 2 variables rather 2

processors prgl and prg2. We need to check that both are them are not in their critical
location.

(Refer Slide Time: 12:50)

srivathsan:MuSHV sris nano mutex-demol.sav

srivathsan: NS sri$ NuSHY -int sutex-demol.smv

wse This is MuSMV 2.5.4 (compiled on Fri Nov 23 21:36:86 UTC 2012)
wse [nabled addons are: compass

wse For more information on NuSMV see <httpi//nusav.fbk.ew

wes OF emEll 1o enusav-users@list. ok, sus.

was Please report DLQ\ to snusev-usersfbk.eus

wes Copyright (c) 2019, Fondazione Bruno Kessler

wew This version of NuSMV is Llinked to the CUDD Llibrary version 2.4.1
w=x (opyright (c] 1905-2884, Regents of the University of Colorade

wis This version of MUSMV i3 Linked to the MiniSat SAT selver.
s See hitp://www, cs, cholmers, se/Cs/Research/Forma Methods /MiniSat
wen (opyright (c] 2003-2005, Niklas Een, Niklas Sorensson

go
WARNING ssx Processes are still supported, but deprecated. -
WARNING === In the future processes may be no longer supported. s

WAPRMING === The model contains PROCESSes or ISAS, s=s

WARNING =e+ The WAC hierarchy will mot be wsable, wes

NuSMV = check_ltlspec -p "G Ilprgl. locationsc & prgd. locationsc)
specification G !(prgl.locetion = ¢ & prg2. locetion = ¢} 13 true

NusHy =

Check Itlspec minus p G of not prgl dot location equal to critical. We use the work crit
and prg2 dot location equal to crit, rather we use c sorry and NuSMV says that the
specification is true. So as we have seen when we give an invariant property to NuSMYV,
if it is true it states that the specification is true on this model and if it is false it gives us a
counterexample which does not satisfy the property. In particular here we are focusing on

invariant properties.

(Refer Slide Time: 14:14)

Algorithm

Input: A TS and property G ¢

Output: Does TS sauisfy invariant G ¢?

A TS satisfies an invariant ¢
if and only if

every reachable state of the TS satishes ¢

We will now ask this question what is the algorithm that is used to give this answer.
Given a transition system and a property G phi where phi is a Boolean expression over
atomic propositions given these 2 as inputs, my output should be does the transition

system satisfy the invariant G phi.

What should be the algorithm for this? The first observation is that a transition system
satisfies an invariant if and only if every reachable state of the transition system satisfies
phi.

(Refer Slide Time: 14:21)

Atomic propositions AP = | p,,p, |
LINT = sct of infinite words over PewerSenAP)
P): Toquest=1 P status=busy

Property 2: p, A —p, is always troe

[AA Ay @ APINF | oach A, saisfies p, A =p, |

Property 2 is written as G p, A =p,

Abave TS does not satisfy G p, A —p,

For example here this transition system satisfies this property only if every reachable
state satisfies the property. Here there was a reachable state which did not satisfy it and
hence this was a counterexample to this property.

(Refer Slide Time: 14:40)

Atomic propositiens AP = | p,p; | APINF = set of infinite words over PouerSen AF)

Py Tequest=]1 Pyt sTatus=busy Property 1: p, & always truc

[Az Ay @ APINF | each A, containa p, |

Property 1 is written as G p,

Above TS does not satisfy G p,

Similarly, here this state did not satisfy p1, hence and it was reachable from the initial
state, hence this transition system did not satisfy the invariant.

(Refer Slide Time: 15:00)

Algorithm

Input: A TS and property G ¢

Output: Does TS satisfy invariant G ¢?

A TS satisfies an invariant ¢

if and only if

every reachable state of the TS satishes ¢

So, this statement says that in order to check if the invariant is true on a transition system
explore all the reachable states of the transition system and in each reachable state check

if phi is true. This is going to be the algorithm for this problem. For doing this we could

do a depth first search on the transition system. Let us now see a concrete algorithm for
this problem.
(Refer Slide Time: 15:37)

set R, stack [/, bool b
for all initial states s
if i R then
Ly
endif
return b

prm\lur;‘ visit (states)
puib(s, U); R:=RU|[s)
while (U & not empty)
{ = top{L))
if Post(s') € R then
pop(LV)

b=bA (= ¢)

else

| s let * & Pour({)\ R
:]m...(-. poesh{#”, L)
Eay R:=Ru i
e endif
|__ready

endwhile

Here is a pseudo code, these are the inputs we will try to understand the pseudo code by
evaluating it on these inputs. This is the transition system and the property to check this
Gpl. Let us start executing, the algorithm uses 3 data structures, a set are a stack u and a
boolean variable b which is initially 1. Here there is a loop over all initial states s, if s is

not in r then visit s.

Let us start with this initial state. This initial state is not in r, so we will visit this initial
state. Now, what is procedure visit? The procedure visit takes as input a state, it first
pushes the state in u and in r. Let us do that, the first state is pushed into the stack u and it
is added to the set r. There is a loop now over the condition u not being empty, yes u is
not empty now what you do, you pick the top of u so s prime is going to be this. If post of

s prime is contained in r.

Let me explained this, post of s prime gives us all successors of s prime. Now, s prime is
the state what are its successors, its successors are the state and the state, these are the 2

transitions so it has 2 successors post of s prime will be this union this. This condition

checks if post of s prime is already in r NO. So we have to go to the else, in the else part

you pick some state in the post which is not in r already.

Here we have 2 choices, let us pick the state and then push it to the stack added to r, the
else part will be done. Now, we go back to the beginning of the loop and check the loop
condition, YES u is not empty. Now s prime is going to be top of u which is this, we
check if the successors of this state are already in r, what are the successors? This itself is

a successor and this is another successor however this is not in r.

So this if condition does not hold we go to the else part we choose a successor which is
not in r, which is this and push it on to the stack and add it to r. People familiar with depth
first search would have already recognized that this is just a depth first search algorithm.
Let us continue, while u is not empty you pick the top of the stack which is this, check if

all its successors are already in r this is the successor, this the successor, NO.

So, go to the else part choose a successor which is not in r it will be this and add it to u
and r. Now we go back to the beginning of the while loop, we look at the top of u which
is this. Now, we check if post of the state is already in r. Yes all its successors are already
in . now we enter the if part. Once we entered the if part we will pop the top of the stack
and now we will check if the state satisfies the invariant phi. What is phi? Phi here is p1

and p1 said request equal to 1.

This state request equal to 0 busy does not satisfy p1, hence we need to pop the state out
and change the value of b to 0, that is what happens. The if part is over and we go back to
the beginning of the loop, what is the top, the top is the state all its successors are already
in . Now, you have to pop that state and change the value of the Boolean, but the

Boolean variable is already 0 and AND of 0 with anything is going to remain 0.

So, the only task left now is to pop this out, go back to the beginning of the loop check
this, you will pop the next state, you will pop the next state, and so on. The while end and

you will go back to this location of the program. Since there is for loop you will check

the other initial state and the other initial state is this but this is already in r. So, this part
will not be satisfied and now the for loop ends and the procedure returns the Boolean b

and the value of b is 0.

It says that this transition system does not satisfy the property. This algorithm can be
modified slightly to also give us the counter example. This was the place where the
Boolean change to 0 and the stack at that point will give us the counter example to the
property. Yes, this is what we said, since this is 0 property is not satisfied.

(Refer Slide Time: 23:01)

Invariants

G¢

Algorithm to check invariants

This brings us to the end of this module. We looked at particular kinds of properties
called invariants, invariants specify that some Boolean expression over the atomic
propositions is always true. To check this we need to check if phi which is this condition
is true on every reachable state of the transition system. We saw a depth first search

algorithm to check invariants.

