
Model Checking
Prof. B. Srivathsan

Department of Computer Science and Engineering
Indian Institute of Technology – Madras

Lecture - 14
Invariants

In the last module we gave a mathematical meaning to the word properties. We said that a

property is nothing but a set of words. We are now going to look at different kinds of

properties. The first kind of properties that we are going to look at are called invariants.

In this module we will see what invariants are we will see how they can be checked in

NuSMV and finally we will look at an algorithm that checks invariant properties on

models.

(Refer Slide Time: 00:44)

We will use 2 running examples in this module, the first one is our favorite transition

system here with the request and the status variables. We will use the same atomic

propositions that we used last time p1 and p2, p1 says that request is 1 and p2 says that

the status is busy. Here are the states and the corresponding evaluations of the atomic

propositions.

(Refer Slide Time: 01:18)

The second example that we will use in this module is the mutual exclusion. Here are 2

processes along with a shared variable y which is there to ensure mutual exclusion. We

had seen this example in the previous unit, the transition system that we are interested in

is the interleaving of these 2 program graphs.

Each program can be in 4 possible states, either it is non-critical after a while it moves to

a waiting state where it wants to move to the critical section. It can move to the critical

section only if certain conditions are satisfied and in the process it makes some

assignments. It stays in its critical section for a while and then when it is about to exit it

moves to an exciting state.

From the exciting state it goes back to the non-critical location and in the process makes

an assignment. The transition system that we are interested in is the interleaving of these

2 program graphs. Let us define some atomic propositions, p1 is the proposition which

says that the first process is in its critical section, p2 is the proposition which says that the

first process is currently in its wait location and finally p4 is the atomic proposition which

says that process 2 is in its wait location.

We have chosen these atomic proposition so the properties that we would be giving on

this transition system would depend on these atomic propositions. So, these 2 are the

running examples for this module. Let us now see some example properties.

(Refer Slide Time: 03:27)

Here is the request busy transition system, let us look at the property that we have been

looking at before as well the property which says that p1 is always true. The property is

of a special form it says that something should always be true. In particular the word that

belong to this property should satisfy the fact that each set contains p1.

The way we write this is G of p1, as we had seen before this transition system does not

satisfy G p1. Let us now see a demo of NuSMV where we give it this transition system

and we check this property. Let us see what the output of NuSMV is.

(Refer Slide Time: 04:36)

Here is the code, I will run this file now. No problems so far, let us now check the ltl

specification, G of request equal to 1 the way we write it in NuSMV is request equal to

true. It says that this specification is false and it says why it is false. It is giving us an

example of an execution which does not satisfy this property. Let us look at the

counterexample, it starts with a state request equal to true and status is ready.

And goes to the state where request equal to false status is busy, goes to request equal to

true and then there is some loop, however already request has been made false in this

state. So, this clearly says that there is an execution where the property is not satisfied.

The thing to note here is that given a model and a property of this kind NuSMV checks if

this property is true on that model and if it is not true it returns an execution which does

not satisfy this property.

Let us now look at another example of a property. This property says that p1 and not p2 is

always true, what are the words that satisfies this property. The words that satisfy should

contain p1 in every set and there should not be p2 anywhere in any of these sets. So, there

is only one word which satisfies this property and that word contains the atomic

proposition p1 in every set.

This is the description A0, A1, A2 such that each Ai satisfies p1 and not p2. How do we

write this property? This property is written as G p1 and not p2 inside the G there is a

Boolean expressions formed out of the atomic propositions. We claimed that this

transition system does not satisfy this property. Let us check what NuSMV says, and if it

says NO, what is the counterexample?

(Refer Slide Time: 07:55)

Let us now check the ltl specification G of requests equal to true and p2 was the atomic

proposition which said that status is busy. We want not of status equal to busy, it gives a

very short counterexample and the counterexample is a loop in the state where request is

false and status is ready. This state clearly does not satisfy the expression request equal to

true and not of status equal to busy, because both of them need to be true request is false

here so already p1 is false.

So, this state does not satisfy the expression inside G and the execution formed by

looping around the state does not satisfy the property.

(Refer Slide Time: 09:12)

This is the execution given by NuSMV as you see it does not contain p1.

(Refer Slide Time: 09:22)

If you saw the previous 2 properties they were of a special form they asked if something

is always true and the something was a Boolean expression over the atomic propositions.

For example here we asked if p1 and not p2 is always true, in this property we asked if p1

is always true. Properties of this kind where we asked if a formula phi is always true

where phi is a Boolean expression over the atomic propositions.

This kind of a property is called invariant and the way it is written is G of the Boolean

expression. Let me repeat, properties of the form which ask for some Boolean expression

is always true are called invariant properties and the way we write them is using the G

operator G phi.

(Refer Slide Time: 10:43)

Let us come to the other example, we want to ask if the transition system of the mutual

exclusion problem satisfies the invariant property G of not of p1 and p3. Is it the case that

in every execution not of p1 and p3 is true, that means p1 says that process one is in

critical location, p3 says that process 2 is in the critical location, p1 and p3 together say

that process 1 and process 2 are in its critical location together and the not says that it is

not the case that both processes are in their critical location.

So, this property asks is it the case that in every execution in every state both process 1,

process 2 cannot simultaneously be in their critical location. Let us check this property

using NuSMV.

(Refer Slide Time: 10:51)

Here is the code that describes the program graphs, there are 2 variables rather 2

processors prg1 and prg2. We need to check that both are them are not in their critical

location.

(Refer Slide Time: 12:50)

Check ltlspec minus p G of not prg1 dot location equal to critical. We use the work crit

and prg2 dot location equal to crit, rather we use c sorry and NuSMV says that the

specification is true. So as we have seen when we give an invariant property to NuSMV,

if it is true it states that the specification is true on this model and if it is false it gives us a

counterexample which does not satisfy the property. In particular here we are focusing on

invariant properties.

(Refer Slide Time: 14:14)

We will now ask this question what is the algorithm that is used to give this answer.

Given a transition system and a property G phi where phi is a Boolean expression over

atomic propositions given these 2 as inputs, my output should be does the transition

system satisfy the invariant G phi.

What should be the algorithm for this? The first observation is that a transition system

satisfies an invariant if and only if every reachable state of the transition system satisfies

phi.

(Refer Slide Time: 14:21)

For example here this transition system satisfies this property only if every reachable

state satisfies the property. Here there was a reachable state which did not satisfy it and

hence this was a counterexample to this property.

(Refer Slide Time: 14:40)

Similarly, here this state did not satisfy p1, hence and it was reachable from the initial

state, hence this transition system did not satisfy the invariant.

(Refer Slide Time: 15:00)

So, this statement says that in order to check if the invariant is true on a transition system

explore all the reachable states of the transition system and in each reachable state check

if phi is true. This is going to be the algorithm for this problem. For doing this we could

do a depth first search on the transition system. Let us now see a concrete algorithm for

this problem.

(Refer Slide Time: 15:37)

Here is a pseudo code, these are the inputs we will try to understand the pseudo code by

evaluating it on these inputs. This is the transition system and the property to check this

Gp1. Let us start executing, the algorithm uses 3 data structures, a set are a stack u and a

boolean variable b which is initially 1. Here there is a loop over all initial states s, if s is

not in r then visit s.

Let us start with this initial state. This initial state is not in r, so we will visit this initial

state. Now, what is procedure visit? The procedure visit takes as input a state, it first

pushes the state in u and in r. Let us do that, the first state is pushed into the stack u and it

is added to the set r. There is a loop now over the condition u not being empty, yes u is

not empty now what you do, you pick the top of u so s prime is going to be this. If post of

s prime is contained in r.

Let me explained this, post of s prime gives us all successors of s prime. Now, s prime is

the state what are its successors, its successors are the state and the state, these are the 2

transitions so it has 2 successors post of s prime will be this union this. This condition

checks if post of s prime is already in r NO. So we have to go to the else, in the else part

you pick some state in the post which is not in r already.

Here we have 2 choices, let us pick the state and then push it to the stack added to r, the

else part will be done. Now, we go back to the beginning of the loop and check the loop

condition, YES u is not empty. Now s prime is going to be top of u which is this, we

check if the successors of this state are already in r, what are the successors? This itself is

a successor and this is another successor however this is not in r.

So this if condition does not hold we go to the else part we choose a successor which is

not in r, which is this and push it on to the stack and add it to r. People familiar with depth

first search would have already recognized that this is just a depth first search algorithm.

Let us continue, while u is not empty you pick the top of the stack which is this, check if

all its successors are already in r this is the successor, this the successor, NO.

So, go to the else part choose a successor which is not in r it will be this and add it to u

and r. Now we go back to the beginning of the while loop, we look at the top of u which

is this. Now, we check if post of the state is already in r. Yes all its successors are already

in r. now we enter the if part. Once we entered the if part we will pop the top of the stack

and now we will check if the state satisfies the invariant phi. What is phi? Phi here is p1

and p1 said request equal to 1.

This state request equal to 0 busy does not satisfy p1, hence we need to pop the state out

and change the value of b to 0, that is what happens. The if part is over and we go back to

the beginning of the loop, what is the top, the top is the state all its successors are already

in r. Now, you have to pop that state and change the value of the Boolean, but the

Boolean variable is already 0 and AND of 0 with anything is going to remain 0.

So, the only task left now is to pop this out, go back to the beginning of the loop check

this, you will pop the next state, you will pop the next state, and so on. The while end and

you will go back to this location of the program. Since there is for loop you will check

the other initial state and the other initial state is this but this is already in r. So, this part

will not be satisfied and now the for loop ends and the procedure returns the Boolean b

and the value of b is 0.

It says that this transition system does not satisfy the property. This algorithm can be

modified slightly to also give us the counter example. This was the place where the

Boolean change to 0 and the stack at that point will give us the counter example to the

property. Yes, this is what we said, since this is 0 property is not satisfied.

(Refer Slide Time: 23:01)

This brings us to the end of this module. We looked at particular kinds of properties

called invariants, invariants specify that some Boolean expression over the atomic

propositions is always true. To check this we need to check if phi which is this condition

is true on every reachable state of the transition system. We saw a depth first search

algorithm to check invariants.

