Model Checking
Prof. B. Srivathsan
Department of Computer Science and Engineering
Indian Institute of Technology — Madras

Lecture - 12
A Problem in Concurrency

Welcome to unit 3 of this course. In the first unit we saw how to model controllers as
transition systems. The second unit was an instruction to the model checker NuSMV, we
also did some examples and exercises. In this unit we will look at more properties that
can be checked on models. Let us start this module with a problem in concurrency.

(Refer Slide Time: 00:34)

Dining philosophers problem mijkstra)

Philosopher /. can eat
only if
he has access to chop-sticks

Sc_-..t) mod 4 and §, mod 4

What should the protocol be so that every philosopher can eat infinitely
often?

Let PO, P1, P2 and P3 be processes, SO, S1, S2 and S3 be some shared resources. SO is
shared between PO and P1, S1 is shared between P2 and P1, S2 is shared between P3 and
P2 and finally S3 is shared between PO and P3. A process can execute only if it has access

to resources on both sides, for example P1 can execute only if it has access to resources

SO and S1.

Here if I is 1 you would get that it has access to resources SO and S1. Similarly, P2 can
execute only if it has access to S1 and S2, P3 can execute only if it has access to S2 and
S3. For PO it can execute only if it has access to SO and S3, for PO Si is SO, but Si minus 1

is P minus 1.

However we have to count modulo 4, in the sense, minus 1 is 3 modulo 4, this is a just a
way to say that pO can execute only if it has access to SO and S3. The problem now is that
there is an operating system which schedules these processes based on the availability of
resources. The question is how should the processes be scheduled so that every process

gets to execute infinitely often.

This is a canonical problem in operating systems, a different version of this problem is
popularly known as the Dining philosophers problem, it was proposed by Dijkstra. Here
PO, P1, P2 and P3 are philosophers; SO, S1, S2, S3 are chop-sticks. Assume that these are

plates, each philosophers work is to think and to eat, to think and to eat, and so on.

To eat he needs to have these 2 chop sticks, he cannot eat with 1 or none and he is not
allowed to eat with hands. So, for philosopher P1 he can eat only if he has access to chop-
sticks SO and S1, similarly PO can eat only if he has access to SO and S3 and so on. Just
that instead of processes we call them philosophers, instead of shared resources we have

shared chop sticks.

The question is what should the protocol be so that every philosopher can eat infinitely
often. By protocol what is the rule that these philosophers should follow in order to
access the resources so that each one gets to eat infinitely often. This is a very famous
problem.

(Refer Slide Time: 04:28)

Coming next: A protocol for the dining philosophers

Let us now give a protocol for the dining philosophers. This is along the same lines as the
Mutual exclusion problem. We will try solve to this problem using our model of
transition systems.

(Refer Slide Time: 04:46)

Philosopher

sticks[i=1]:=4 sticka[1] 1=i

reaturn
sticks[i]=free
sticks[i~1)=free

NuSMV demo

Let us try to give a transition system for philosopher I. Initially, the philosopher I is
thinking, then he has 2 choices either he requests for the left stick or he request for the

right stick. Suppose he requests for the left stick, if the left stick is free.

Now, for philosopher P1 his left is S1 assumed that he is sitting facing the plate his left
would be S1, his right would be SO, so for philosopher Pi his left is Si, his right is Si

minus 1.

So, if his left stick is free then he take the transition to the state have left, in the process
he sets that the stick I is with him. Okay, so assuming that sticks is an array, sticks of is
being to set to I. Suppose he has left, now he has to wait for the right stick, if the right
stick is free, he can take this transition and in the process he denotes that the I minus 1

stick is with him and then he can go to the state where he can eat.

This path is symmetric, here he first requests for the right then he gets his right, then he
requests for his left once he has both of them he can eat. He can keep eating as long as he
wants and then when he is done he goes to the return state. From the return state he can
go back to think, in the process he can release both the sticks. He can say that my
resources are free now, my chop sticks are free for you to use. This is the model of the

philosopher.

Let us now try to see the NuSMV demo of this model. Let us now write the philosopher
module in NuSMV.
(Refer Slide Time: 07:40)

MODULE philosopher(j, left, right)

VAR
location: {think, req_right,req_left, have_right, have_left, eat, return};

ASSIGN

init(location) ;= think

nextilocation) ;= case
location=think: {think, req_left, req_right};
location=req_left & left=free: have_left;
location=have_left & right=free- eat;
location=req_right & right=free: have_right;
location=have_right & left=free: eat
location=¢at: {eat, return]
location=return; think;
TRUE: location;
esac

nextileft) := case
location=req_left & left=free: i
location=return : free;
location=have_right & left=free: i;
TRUE: location;

esac;

nextiright) |= case
location=req_right & right=Ffree: |
location=return : free;
location=have_left & right=free: |
TRUE: location
esac

sl W EAER (Tl S W

So, we define a module philosopher which takes as input 3 parameters its number, the left
stick and the right stick. What are its variables? We need to define its locations the
locations are think, request right, request left, have right, have left, eat, return yes that's it.

What are the transitions?

The initial value of location is think let us now define the transitions. Next of location is
as follows; if location is think, he can either keep thinking or he can request for the left
stick or he can request for the right stick. If location is request left and the left stick is
free, assume that this gives us the fact that the left stick is free, we will then call it

appropriately in the main module.

So, if location is request left and the left stick is free, the philosopher goes to have left.
Now, if the location is have left and if the right is free, then he can go to eat. Similarly, if
the location is the request right and the right is free, he goes to the state have right and if

location is have right and the left is free he goes to the eat state.

When he is in the eat state he can continue eating or he can go to the return state and once
he is in the return state, he goes back to the think state. Now, we need to define the next
for the variables left and right. Next of left if you see, this is the left stick if the location is
request left, then the left stick should be set to the value I and when going back to think

the left stick should be made free again.

Let us now write it. If location is request left and the left is free, my location goes to have
left and my left should be set to I. Now, if location is returned the left should be set to
free. This will become clear when we write the main module. Now, what about next of
right; if location is request right and the right is free, then right should become I, the same

time if location is returned then the right should become free.

We still have missed something, in this part if you are in have right and the left is free
then you go to eat. So, in this transition again the left should be set to I, similarly here the

right should be set to 1.

Lets come back here, if location is have right and left is free, then set your left to I.
Similarly, if the location is have left and left is free sorry, right is free and set the right to
be I. We are more or less done, however we need to give the statement which says that if

none of the conditions match stay in the same location.

Finally, location we have written the philosopher module now let us write the main
module.

(Refer Slide Time: 14:40)

esac.
MODULE main

VAR
sticks: array 0 .. 3 of (free, D, 1, 2, 3)
phild: process philosopher(D, sticks[0], sticks[3])
phill: process philosopher(l, sticks[1], sticks[0])
phil2: process philosopher(2, sticks([2], sticks[1])
phil3: process philosopher(3, sticks[3], sticks[2])

. gEed BEOASE (T8 4 S

|
Module main, what are the variables? we will now define a variable denoting sticks it is
going to be an array of size the number of philosophers. Let us say the number of
philosophers is 4 as given in the slides, 0 to 3 each cell of the array is made of values
from this set either it can be free or it can be 0, 1, 2, 3, denoting the fact that philosopher

0 has access to that stick.

Essentially sticks of 0, sticks of 1, sticks of 2, sticks of 3 each of them contain either free
0,1,2 or 3. Lets now define the philosophers; philosopher 0 is a process philosopher his
number is 0 if you remember we have 3 inputs to philosopher. His left stick is sticks of 0
and his right stick is sticks of 3. Similarly, philosopher 1 is process, philosopher his

number is 1 his left is 1, his right is 0.

Let me complete philosopher 2 his number is 2, his left is 2 and his right is 1. Finally,
philosopher 3 process philosopher 3, his left is 3 and his right is 2. We will now run this
code in NuSMV.

(Refer Slide Time: 16:00)

srivathsan:NuSMV sri$ NuSHV -int philosopher-demo. sav

wxx This is MuSMV 2,5.4 (compiled on Fri New 23 21:36:86 UTC 2012)
w»= Enabled addons are: compass

== For mare information on NSV see <http://nusev.fBk,eus

wws OF enail to <nusmv-usersglist. fok.eus.

wes Please report bugs to <nusew-usersfifbk.ew

wen Copyright (c) 2818, Fondazione Bruno Kessler

sem THiS wersion of NuSMV 13 Linked to the CUDD Library vérslom 2.4.1
wew Copyright (c) 1005-2844, Regents of the University of Colorade

+=s This versicn of NuSMV is Linked to the MiniSat SAT solver.
v Sée Witp://www.Cs. chalmers.se/(s/Research/FornaMethods/MiniSat
w== Copyright (c) 2883-2845, Niklas Een, Niklas Soressson

NuSMY = go

file philosopher-demo.smv: line 19: at token “esac™: syntax error
WSy = |

|
Let us now run this code. I have saved it under philosopher demo, let me call it using
NuSMV demo dot smv, now go. There seems to be a syntax error, let us check it says at
line 29 there is a syntax error. Line 29, Yes I forgotten the semicolon here and save it now
let me run it again NuSMV philosopher demo.
(Refer Slide Time: 16:14)

location: {think, req_right,req_left, have_right, have_left, eat, return};

ASSICN

init{location) ;= think

nextilocation) = case
location=think: {think, req_left, req_right};
location=req_left & |eft=free: have_left
location=have_left & right=free: eat;
location=req_right & right=free: have_right
location=have_right & lefi=free: eat;
location=eat: {eat, return}
location=return: think;
TRUE: location;
esac;

next(left) = case
location=req_left & left=free: |
location=return : free;
location=have_right & left=free: |;
TRUE: location,

[1

next{right) ;= case
location=req_right & right=free: i;
location=return ; free;
location=have_left & right=free: i;
TRUE: location
#5aC,

MODULE main

VAR
i e e AN (e e S

There seems to be another problem cannot assign value have right to variable sticks of 3
line 18. So the error is here this should be left and here it should be right so this was the
erTor.

(Refer Slide Time: 16:47)

MODULE philasopheri, left, right)

VAR

location: {think, req_right.req_left, have_right, have_left, eat, return);
ASSICN

initllocation) ;= think

next(location) = case
location=think. {think, req_left, req_right},
location=req_left & left=free: have_left;
location=have_left & right=free: eat;
location=req_right & right=free: have_right;
location=have_right & left=Ffrea: eat,
location=eat: {eat, return]
location=return: think;
TRUE: location;
esac

next(left) := case
location=req_left & left=free: |
location=return : free;
location=have_right & left=free: i;
TRUE: left;

esa;

next(right) = case
location=req_right & right=Ffree: |
location=return : free;
location=have_left & right=free: |;
TRUE: right;
esac

1n0 gt g T A1) (T i g

Lets run it again, NuSMV philosopher demo, yes it has successfully executed. Let us now
try to simulate the module, what is the initial state? if you see there seems to be some
error. It says too many future states, this is because we have not specified the initial states
in the main module.

(Refer Slide Time: 17:09)

srivathsan:MuSMV sri§ NuSMV -int philosophe r-demo. sav

waw This is NuSMV 2.5.4 (compiled on Fri Nov 23 71:36:86 UTC 2812)
Enabled addons are: compass

For more informotion om NuSMV see <http://musev. fbk.eus

or esail to <nusmy-users@list. fbk.euw.

Please report bugs to <nussv-users@fbk,eus

wss Copyright (c] 2018, Fomdazione Bruno Kessler

sas This wersion of NuSMV is Linked to the CUDD Library version 2.4.
wee Copyright [c) 1005-2844, Regents of the University of Colorado

#2 This version of NuSMV is linked to the MiniSat SAT solver.
wen See hitp://wew,cs.chalners, se/Cs/Research/FormalMethods /MiniSat
wen Copyright (c) 2083-2095, Niklas Een, Niklas Sorensson

NuSMV > go
TWARNING Processes are still supported, but deprecated. s
WARNING === In the future procesies may be no longer supported. ess

WARMING === The model contains PROCESSes or [SAs, sse

WARMING === The HRC hierarchy will not be ussble. s==

NuSMV > pick_state =i

Too many (Ge+d2) future states to visualize. Please specify further constraints:

Y | 4

|
So, in the main module we should have given the initial values for assign initial value of
sticks of 0 is free, initial value of sticks of 1 is free as well, initial value of sticks of 2 is
free and finally init of sticks of 3 is free as well.

(Refer Slide Time: 18:13)

srivathsan:NuSV sri$ NuSMV -int philosopher-deso. sav

wxx This i NuSMV 2.5.4 (compiled en Fri Nov 23 21:36:86 UTC 2012)
#»# Enabled addons are: compass

wxa For more information on MuSMV see <http://nusev. fbk.eus

s=s OF emadl to <nusav-usersglist. fok.eus,

wes Flease report bugs to <nusew-usersffbk.eus

Copyright (c) 2010, Fondazione Bruno Kessler

This wersion of NuSMV is Linked to the (UDD Library version 2.4.1
Copyright (c] 1995-2084, Regents of the University of Colorade

++x This version of NuSMV is linked to the MiniSat SAT solver.
wan See hitp:/f/wew,cs.chalmers. se/Cs/Research/TFornalMethods /MiniSat
s Copyright (c) 2093-20@5, Niklas Een, Niklas Sorensson

NuSMV > go
WARMING ws= Processes are still supported, but deprecated. sae
WARNING sew Im the future processes may be no longer supported. ees

WARNING === The model contains PROCESSes or ISAs. see
WARNING =e= The WRC hierarchy will not be usable,
NusMy = §

Lets hope that we can run it successfully this time NuSMV philosopher. Lets now try to
pick an initial state to see if it works, yes it does.

(Refer Slide Time: 18:22)

Enabled addons are: compass

For more information om NuSMV see <http:i//nusev.fbk.eus
or email to enusmv-usersglist.fbk.euws.

wss Please report bugs to <nussv-users@fbk.euw

wen Copyright (c) 2810, Fomdazione Bruno Kessler

wes This wversion of NuSMV is Linked to the CUDD Library version 2.4.1
#ss Copyright (c) 1095-2084, Regents of the University of Colorado

wes This wversion of NuSMV is Linked to the MiniSat SAT solver,
was See WUtp: /w05, chalners. s&/C5/Reses rch/Forma IMethods /MiniSat
»»= Copyright (c) 2093-2085, Niklas Een, Niklas Sorensson

NusMV = go
WARNING ss= Processes are still supported, but deprecated. e
WARNING === In the future processes may be no longer supporied, ses

WAPRMING wes The model contains PROCESSes or ISAs. ewe
WARMING === The HAC hiesrarchy will not be usable, sss
NuSMV > plok_state -1

srsspsnsneesses AVAILABLE STATES sstsiisiniins

State =
L]l
sticks[®] = free
sticks[1] = free
sticks(2] = free

sticks[3] = free

phild. location = think
phill. location = think
phill. location = think
phiild. location = think

There's only one availsble state. Press Return to Proceed.]|

There is only 1 initial state and in this initial state all the philosophers are thinking and all
the sticks are free. Let us now try to simulate this model to understand certain things.

(Refer Slide Time: 18:47)

== Please report bugs to <nusav-users@fbk.ew
=+ Copyright (c) 2010, Fondazione Bruno Kessler

=+ This version of NuSMV is Linked to the CUDD Library version 2.4.1
we Copyright (c) 1005-3084, Regents of the University of Colorade

ws This version of NuSMV {s linked to the MiniSat SAT solver.
w8 See hUTR://www, (8. chalners. se/Cs/Researchf/ForsalMethods /MiniSat
== Copyright (c) 2083-2885, Niklas Een, Niklas Sorensson

usSHMV > go
WRMING === Processes are still supported, but ceprecated. ey
WRNING In the future processes may be no longer supported.

WRMING === The model contains PROCESSes or [SAs. e==
WAMING =se The HAC hierarchy will not be usable, es=
WSMV » pick_state =1

ssssassnsessss AVAILABLE STATES sswsiisnessns

sticks[#] =
sticks[l] = free
sticks[2] =
sticks[3] = free
phild. location = think
phill.lecation = think
phil.lecation = think
phild. location = think

here's only one avoilable state. Press Return to Proceed.

hosen state is: @
WMV > simulate -§ -k 15]

Simulate minus I minus k say for 15 steps.

(Refer Slide Time: 18:55)

WARNING === Processes are still supported, but deprecated. e
WARNING === In the future processes may be no longer supported. se=

WARNING === The model contains PROCESSes or I5As, ees
WARNING ss= The HRC hisrarchy will not be usable. ss=
NuSMV > pick_state -1

AVAILABLE STATES semsrssnssnns

phill. lacation = thimk
phild. lecation = think
phild. lacation = thimk

There's only one available state. Press Return to Proceed.

Chosen state is: @
NuSMV > sisulate -1 -k 15
wesesens Simylation Starting From State 1.1 seswwes

snnnsnnnnennnns AVAILABLE STATES ssssssssssnns

----- State
sticks(0) = free
sticks(1) = free
sticks (2] = free

sticks[3) = free

phile. lscatisn = think

phill.lecation = think 1
phil2. lacation = thimk

]
We started with all of them in the think state and all sticks free.

(Refer Slide Time: 19:05)

sticks[0] = free
sticks[1] = free
sticks(2] = free
sticks (3] = free
phile. location = think
phill.lecation = think
phil2. lecation = thifk
phil3. location = think

There's only one available state. Press Return to Proceed.
Chosen state is: @

NuSMV > sisulate -1 -k 15

sessswss Sisulation Starting From State 1.1

sesssannsassess AVAILABLE STATES sssswimssssss

sticks[8) = free
sticks[1] = free
sticks[2] = free
sticks[3] = free
philf.lecation = think
phill. lecation = think
phil2.location = think
phild. lecation = req_left

selector
g = FALSE
phili.ruaning = TRLE

phil2. running = FALSE

There are multiple available successors, let us take this successor which moves to the
philosopher 3 going to the request left state, from thinking philosopher 3 moves to
request left, this is state 0. From state O these are the possible successors let us choose 1
SuCcessor.

(Refer Slide Time: 19:35)

Choose @ state from the above (8-12): @

Chosen state is: @
eresvssnnssnnsr AVAILABLE STATES ssssrevemeene

sassssssssssnsssan Giale ssssssssmssasssan
= frés
ree
free
fres
pn = think
= think
req_left
= reg_left

This state is reachoble through:

_process_selector_ = phil2
= FALSE

phil3.running = FALSE
philZ. running = TRUE

FALSE
FALSE

ph
phile. running

rEssmsrerTramrass Gigte ssrsmrsvssssesess

phil2. location = think

This state &

process_selector_ ®
= FAL

Fann =

Let us choose this successor where philosopher 2 is also moving to the request left state,

this is successor 0.
(Refer Slide Time: 19:50)

1)

_process_selector_ = phild
running = FALSE

phill. ruaming = TRUE
phill.running = FALSE
running = FALSE
wining = FALS

Choose a state from the above (8-18): 0
Chasen state is: @
wasnsaanaianses AVAILABLE STATES swickabaions

e T r—

sticks = free
sticks (1] = free
sticks (2] = free
sticki[1] = free

phild. lacation =
phikl, location eg_left
phil2. location = req_left
phild. location = req left

This state is reachable through:
(1]

_process_selector_ = phill
running = FALSE
phild.ruaning = FALSE
phild.running = FALSE
phill, rusming = TRLE

L Funning = FALSE

sesssnssssssasnns GiIlc sessssssssnnnnnny |

phill. lec think

Now, let us choose the successor where philosopher 1 moves to request left.

(Refer Slide Time: 20:01)

phil®.running = FALSE

Choose a state from the above (8-8): @
Chasen state is: @

wressesawersees AVAILABLE STATES ssmewenunsnns

phily, Locat lon

This state is reachable through:
a8l
process_selegtor_ = phild
running = FALSE
phild.running = FALSE
12.running = FALSE

i Z: unning = FALSE
phild.running = TRUE

This state is reachable through:
1)

process_selector_ = phill
running = FALSE
phild.running = FALSE |

|
And finally let us now choose the successor where philosopher 0 moves to request left.
Right now all sticks are free and all the philosophers have moved to the request left state.
Now what could the successors be.

(Refer Slide Time: 20:26)

phill.running = TRUE
phill, running = FALSE
Choose & state from the above (0-6): @
Chosen state is: @
w AVAILABLE STATES ssswssmsnsans

sssssssans State sessssssssssassen

This state is reachabld through:
L1

55_selector_ = main
g = TRUE

sticks (3
phild. lacat Lon have_left
This state is reachable through:

1
_process_selector_ = phild

This says that if process main is selective then there is no change.

(Refer Slide Time: 20:34)

sticks[3] » free
1 = req_left
= req_left

= req_left
phild. location = req left

This state is reachable through:

process_selector_ = main
running = TRUE
phild.running = FALSE
phil2.running = FALSE
phill.running = FALSE
phild.running = FALSE

sEstmssssssssssas S{ME SEsesssssssssmas
sticks[3] = 3
phild. location = have_left
I

This state is reachable through:
1

_process_selector_ = phild
running = FALSE

phild. runaing = THUE

= FALSE

= FALSE

= FALSE

ang
phil®. running

e L T T re——
sticks(d) = 2
sticks[d free

phil2, Lecation = have_left
phild, location = req left

This state i3 reachable through:

This is the state where philosopher 3 now moves to the have left because sticks of 3 is
free philosopher 3 can have his left stick and then he sets sticks of 3 to be 3. Let us
choose state 1,from state 1 there are multiple successors, in this successor okay let me
explain this is the 1 where nothing has changed.

(Refer Slide Time: 21:09)

___|
............... AVATLABLE STATES ssmsescemsss

sazzzrzszzrzasaza §{gle s=zezzzzszrzmses
sticks[0] = free
sticks(1] = free

ton = have_left

This state is reachoble through:
W — B T i
_process_selgcior_ = main
running = TRUE

sticks[2] = 3
phild. lecation = eat
This state is reachable through:
1)
process_selector_ = phild
running = FALSE

= TRUE

= FALSE
= FALSE
g = FALSE

This is the result of process main being selected, so none of the philosophers is executing
his step.
(Refer Slide Time: 21:21)

phild, location = eat

This state 13 reachable through:

1
_process_selector_ = phild
runn = FALSE
phil ing = TRUE
pail = FALSE
phil FALSE
phill ming = FALSE

e State =
sticks(2] = 2

phil2:location = have_left

phild. location = have_left

This state is reachable through:
2] - =
process _selector_ = phil2
running = FALSE

= FALSE
= TRUE

= FALSE
w FALSE

State 1 is when philosopher 3 goes to the eat state, state 2 is when philosopher 2 moves to
have left. So, right now philosopher 3 is already in have left, philosopher 2 also moves to
have left and he sets sticks of 2 to 2, this is state 2.

(Refer Slide Time: 21:48)

phil®. lecation = req left
ion = req_left
ion = have_left
phild. lacation = have_left

This state is reachable through:
L1
process_selector_ = phill
running = FALSE
phild. running = TRUE
= FALSE
Aing = FALSE
ning = FALSE

selector_ = main
g = TRUE
phild. ruaning = FALS

sticks(1] = 1
phill.location § have_left

This state is reachable through:
2

_process_selector_ = phill
run FALSE
FALSE
FALSE
TRUE
FALSE
== ==zx SUALE sE==srsr=zzzazzzs
sll] = 2
.location = reg left

Now, from here let us choose the state where philosopher 1 moves to have left.
Philosopher 3 is already in have left, philosopher 2 is in have left and philosopher 1
moves to have left as well, this was state 2.

(Refer Slide Time: 22:14)

_process_selector_ = main
running = TRUE

phill.running = FALSE

)
process_selector_ = phild
running = FALSE

phil3. running = TRUE

smsmssssssnssass 5iQlc sesssassssannnnnn
sticks[@] = 1
phill.location = eat

This state is reachable through:
3

s_selector_ = phill
FALSE

Mi11. running = TRUE
srunning = FALSE

S = State ===

= have_left
= have_left

ion

This state is reachoble through:
4)

pr 18 _selector phil®
r FALSE

phi ming = FALSE

phi ning = FALSE

[running = FALSE

hi
phild.ruaning = TRUE

And now I will once again choose the situation where philosopher 0 takes his left stick
sets it to 0, sticks of 0 to 0 and then moves to have left, this is state 4.

(Refer Slide Time: 22:23)

Choose a state from the above (8-4): 4
Chosen state is: 4
nmntnnnansnnst AVAILABLE STATES ssmsiissensns

I ——

= have_left
ien = have_left
ion = have_left
ien = have left

This state is reachoble through:
1

process_selector phile
funning = FALSE

= FALSE

g = FALSE
FALSE
TRUE

H'DI{\!_\rEl'ﬂ\’.ll}l’ = main
g = TRUE
Jrunning = FALSE

48 _selactor_ = phild
running = FALSE
phill.running = TRUE

_process_selector_ = phill

|
So, currently all the philosophers have taken their left stick. What could the possible

successors b. There is only 1 successor which is the same state it just says that this is
reachable through different selection of processes but no matter whatever process you
select you get back to the same state. Let me choose say the process selector is
philosopher 2 nothing happens.

(Refer Slide Time: 23:09)

Choose a state from the above (8-=4): 2
Chosen state is: 2
............... AVAILABLE STATES sswsismsnsens

sss State ==

= have_left
n = have_left

process_selector_ phild
running = FALSE
phill.running = TRUE
I

If you see all of them have moved to a scenario where they have the left stick alone.
Since, none of them can go to the eat state they cannot release the stick. So this is the
situation where all of them keep waiting for the right stick, no matter whichever
philosopher is chosen to proceed the state remains the same.

(Refer Slide Time: 23:49)

A deadlock

[{thin}:. think, think, t.h:.nkﬂ

[Ehalre_lefr.. have_left, have_left, mru_lnft:l]

If you see it always stays in the left, have left scenario this kind of a scenario is called a
deadlock. From the initial state where all the philosophers were in the think state the
system has reached a state where each of the philosopher processes is in the have left
state and the sticks is like this; sticks of 0 contain O, sticks of 1 contains 1, sticks of 2

contains 2, and sticks of 3 contains 3.

This process cannot move ahead because sticks of 1 is not free, similarly none of the
processes can move ahead because the sticks are not free. Since none of the processes can
move forward the situation is called a deadlock.

(Refer Slide Time: 26:26)

In this unit...

What properties should be checked to detect deadlocks?

» Module 2: Attach a mathematical meaning to properties
» Module 3, 4: Different examples of properties

» Module 5: Answer to the question

The question is, How do we detect such deadlocks in models? what we did now was a
simulation I forged certain transitions and I showed that there is a deadlock scenario. But
suppose you have a model in your hand and you want to check if such kind of deadlocks

are present in the model what should you do?

This is going to be the subject of this unit, what properties should be checked to detect
deadlocks. We will try to answer this question in a step by step manner. I hope that the
question is clear, we saw this model of the dining philosophers it's a concurrent system
the model had a deadlock. Now the question is, How do we detect such deadlock using

NuSMV?

Are there certain properties that we can check instead of doing this manual simulation or
there some properties that we can check so that the deadlocks are revealed. Now in the
step by step procedure in module 2 we will first attach a mathematical meaning to the

word properties.

In module 3 and 4 we will see different examples of properties they will still not be able
to detect deadlocks. Finally in module 5 we will explain certain properties and ways of

checking these properties in NuSMV which will reveal deadlocks.

