
Model Checking
Prof. B. Srivathsan

Department of Computer Science and Engineering
Indian Institute of Technology – Madras

Lecture - 12
A Problem in Concurrency

Welcome to unit 3 of this course. In the first unit we saw how to model controllers as

transition systems. The second unit was an instruction to the model checker NuSMV, we

also did some examples and exercises. In this unit we will look at more properties that

can be checked on models. Let us start this module with a problem in concurrency.

(Refer Slide Time: 00:34)

Let P0, P1, P2 and P3 be processes, S0, S1, S2 and S3 be some shared resources. S0 is

shared between P0 and P1, S1 is shared between P2 and P1, S2 is shared between P3 and

P2 and finally S3 is shared between P0 and P3. A process can execute only if it has access

to resources on both sides, for example P1 can execute only if it has access to resources

S0 and S1.

Here if I is 1 you would get that it has access to resources S0 and S1. Similarly, P2 can

execute only if it has access to S1 and S2, P3 can execute only if it has access to S2 and

S3. For P0 it can execute only if it has access to S0 and S3, for P0 Si is S0, but Si minus 1

is P minus 1.

However we have to count modulo 4, in the sense, minus 1 is 3 modulo 4, this is a just a

way to say that p0 can execute only if it has access to S0 and S3. The problem now is that

there is an operating system which schedules these processes based on the availability of

resources. The question is how should the processes be scheduled so that every process

gets to execute infinitely often.

This is a canonical problem in operating systems, a different version of this problem is

popularly known as the Dining philosophers problem, it was proposed by Dijkstra. Here

P0, P1, P2 and P3 are philosophers; S0, S1, S2, S3 are chop-sticks. Assume that these are

plates, each philosophers work is to think and to eat, to think and to eat, and so on.

To eat he needs to have these 2 chop sticks, he cannot eat with 1 or none and he is not

allowed to eat with hands. So, for philosopher P1 he can eat only if he has access to chop-

sticks S0 and S1, similarly P0 can eat only if he has access to S0 and S3 and so on. Just

that instead of processes we call them philosophers, instead of shared resources we have

shared chop sticks.

The question is what should the protocol be so that every philosopher can eat infinitely

often. By protocol what is the rule that these philosophers should follow in order to

access the resources so that each one gets to eat infinitely often. This is a very famous

problem.

(Refer Slide Time: 04:28)

Let us now give a protocol for the dining philosophers. This is along the same lines as the

Mutual exclusion problem. We will try solve to this problem using our model of

transition systems.

(Refer Slide Time: 04:46)

Let us try to give a transition system for philosopher I. Initially, the philosopher I is

thinking, then he has 2 choices either he requests for the left stick or he request for the

right stick. Suppose he requests for the left stick, if the left stick is free.

Now, for philosopher P1 his left is S1 assumed that he is sitting facing the plate his left

would be S1, his right would be S0, so for philosopher Pi his left is Si, his right is Si

minus 1.

So, if his left stick is free then he take the transition to the state have left, in the process

he sets that the stick I is with him. Okay, so assuming that sticks is an array, sticks of is

being to set to I. Suppose he has left, now he has to wait for the right stick, if the right

stick is free, he can take this transition and in the process he denotes that the I minus 1

stick is with him and then he can go to the state where he can eat.

This path is symmetric, here he first requests for the right then he gets his right, then he

requests for his left once he has both of them he can eat. He can keep eating as long as he

wants and then when he is done he goes to the return state. From the return state he can

go back to think, in the process he can release both the sticks. He can say that my

resources are free now, my chop sticks are free for you to use. This is the model of the

philosopher.

Let us now try to see the NuSMV demo of this model. Let us now write the philosopher

module in NuSMV.

(Refer Slide Time: 07:40)

So, we define a module philosopher which takes as input 3 parameters its number, the left

stick and the right stick. What are its variables? We need to define its locations the

locations are think, request right, request left, have right, have left, eat, return yes that's it.

What are the transitions?

The initial value of location is think let us now define the transitions. Next of location is

as follows; if location is think, he can either keep thinking or he can request for the left

stick or he can request for the right stick. If location is request left and the left stick is

free, assume that this gives us the fact that the left stick is free, we will then call it

appropriately in the main module.

So, if location is request left and the left stick is free, the philosopher goes to have left.

Now, if the location is have left and if the right is free, then he can go to eat. Similarly, if

the location is the request right and the right is free, he goes to the state have right and if

location is have right and the left is free he goes to the eat state.

When he is in the eat state he can continue eating or he can go to the return state and once

he is in the return state, he goes back to the think state. Now, we need to define the next

for the variables left and right. Next of left if you see, this is the left stick if the location is

request left, then the left stick should be set to the value I and when going back to think

the left stick should be made free again.

Let us now write it. If location is request left and the left is free, my location goes to have

left and my left should be set to I. Now, if location is returned the left should be set to

free. This will become clear when we write the main module. Now, what about next of

right; if location is request right and the right is free, then right should become I, the same

time if location is returned then the right should become free.

We still have missed something, in this part if you are in have right and the left is free

then you go to eat. So, in this transition again the left should be set to I, similarly here the

right should be set to I.

Lets come back here, if location is have right and left is free, then set your left to I.

Similarly, if the location is have left and left is free sorry, right is free and set the right to

be I. We are more or less done, however we need to give the statement which says that if

none of the conditions match stay in the same location.

Finally, location we have written the philosopher module now let us write the main

module.

(Refer Slide Time: 14:40)

Module main, what are the variables? we will now define a variable denoting sticks it is

going to be an array of size the number of philosophers. Let us say the number of

philosophers is 4 as given in the slides, 0 to 3 each cell of the array is made of values

from this set either it can be free or it can be 0, 1, 2, 3, denoting the fact that philosopher

0 has access to that stick.

Essentially sticks of 0, sticks of 1, sticks of 2, sticks of 3 each of them contain either free

0,1,2 or 3. Lets now define the philosophers; philosopher 0 is a process philosopher his

number is 0 if you remember we have 3 inputs to philosopher. His left stick is sticks of 0

and his right stick is sticks of 3. Similarly, philosopher 1 is process, philosopher his

number is 1 his left is 1, his right is 0.

Let me complete philosopher 2 his number is 2, his left is 2 and his right is 1. Finally,

philosopher 3 process philosopher 3, his left is 3 and his right is 2. We will now run this

code in NuSMV.

(Refer Slide Time: 16:00)

Let us now run this code. I have saved it under philosopher demo, let me call it using

NuSMV demo dot smv, now go. There seems to be a syntax error, let us check it says at

line 29 there is a syntax error. Line 29, Yes I forgotten the semicolon here and save it now

let me run it again NuSMV philosopher demo.

(Refer Slide Time: 16:14)

There seems to be another problem cannot assign value have right to variable sticks of 3

line 18. So the error is here this should be left and here it should be right so this was the

error.

(Refer Slide Time: 16:47)

Lets run it again, NuSMV philosopher demo, yes it has successfully executed. Let us now

try to simulate the module, what is the initial state? if you see there seems to be some

error. It says too many future states, this is because we have not specified the initial states

in the main module.

(Refer Slide Time: 17:09)

So, in the main module we should have given the initial values for assign initial value of

sticks of 0 is free, initial value of sticks of 1 is free as well, initial value of sticks of 2 is

free and finally init of sticks of 3 is free as well.

(Refer Slide Time: 18:13)

Lets hope that we can run it successfully this time NuSMV philosopher. Lets now try to

pick an initial state to see if it works, yes it does.

(Refer Slide Time: 18:22)

There is only 1 initial state and in this initial state all the philosophers are thinking and all

the sticks are free. Let us now try to simulate this model to understand certain things.

(Refer Slide Time: 18:47)

Simulate minus I minus k say for 15 steps.

(Refer Slide Time: 18:55)

We started with all of them in the think state and all sticks free.

(Refer Slide Time: 19:05)

There are multiple available successors, let us take this successor which moves to the

philosopher 3 going to the request left state, from thinking philosopher 3 moves to

request left, this is state 0. From state 0 these are the possible successors let us choose 1

successor.

(Refer Slide Time: 19:35)

Let us choose this successor where philosopher 2 is also moving to the request left state,

this is successor 0.

(Refer Slide Time: 19:50)

Now, let us choose the successor where philosopher 1 moves to request left.

(Refer Slide Time: 20:01)

And finally let us now choose the successor where philosopher 0 moves to request left.

Right now all sticks are free and all the philosophers have moved to the request left state.

Now what could the successors be.

(Refer Slide Time: 20:26)

This says that if process main is selective then there is no change.

(Refer Slide Time: 20:34)

This is the state where philosopher 3 now moves to the have left because sticks of 3 is

free philosopher 3 can have his left stick and then he sets sticks of 3 to be 3. Let us

choose state 1,from state 1 there are multiple successors, in this successor okay let me

explain this is the 1 where nothing has changed.

(Refer Slide Time: 21:09)

This is the result of process main being selected, so none of the philosophers is executing

his step.

(Refer Slide Time: 21:21)

State 1 is when philosopher 3 goes to the eat state, state 2 is when philosopher 2 moves to

have left. So, right now philosopher 3 is already in have left, philosopher 2 also moves to

have left and he sets sticks of 2 to 2, this is state 2.

(Refer Slide Time: 21:48)

Now, from here let us choose the state where philosopher 1 moves to have left.

Philosopher 3 is already in have left, philosopher 2 is in have left and philosopher 1

moves to have left as well, this was state 2.

(Refer Slide Time: 22:14)

And now I will once again choose the situation where philosopher 0 takes his left stick

sets it to 0, sticks of 0 to 0 and then moves to have left, this is state 4.

(Refer Slide Time: 22:23)

So, currently all the philosophers have taken their left stick. What could the possible

successors b. There is only 1 successor which is the same state it just says that this is

reachable through different selection of processes but no matter whatever process you

select you get back to the same state. Let me choose say the process selector is

philosopher 2 nothing happens.

(Refer Slide Time: 23:09)

If you see all of them have moved to a scenario where they have the left stick alone.

Since, none of them can go to the eat state they cannot release the stick. So this is the

situation where all of them keep waiting for the right stick, no matter whichever

philosopher is chosen to proceed the state remains the same.

(Refer Slide Time: 23:49)

If you see it always stays in the left, have left scenario this kind of a scenario is called a

deadlock. From the initial state where all the philosophers were in the think state the

system has reached a state where each of the philosopher processes is in the have left

state and the sticks is like this; sticks of 0 contain 0, sticks of 1 contains 1, sticks of 2

contains 2, and sticks of 3 contains 3.

This process cannot move ahead because sticks of 1 is not free, similarly none of the

processes can move ahead because the sticks are not free. Since none of the processes can

move forward the situation is called a deadlock.

(Refer Slide Time: 26:26)

The question is, How do we detect such deadlocks in models? what we did now was a

simulation I forged certain transitions and I showed that there is a deadlock scenario. But

suppose you have a model in your hand and you want to check if such kind of deadlocks

are present in the model what should you do?

This is going to be the subject of this unit, what properties should be checked to detect

deadlocks. We will try to answer this question in a step by step manner. I hope that the

question is clear, we saw this model of the dining philosophers it's a concurrent system

the model had a deadlock. Now the question is, How do we detect such deadlock using

NuSMV?

Are there certain properties that we can check instead of doing this manual simulation or

there some properties that we can check so that the deadlocks are revealed. Now in the

step by step procedure in module 2 we will first attach a mathematical meaning to the

word properties.

In module 3 and 4 we will see different examples of properties they will still not be able

to detect deadlocks. Finally in module 5 we will explain certain properties and ways of

checking these properties in NuSMV which will reveal deadlocks.

