
Model Checking
Prof. B. Srivathsan

Department of Computer Science and Engineering
Indian Institute of Technology – Madras

Lecture - 10
Modeling Concurrent Systems in NuSMV

In module 3 we gave examples of modeling hardware circuits using NuSMV. In this

module we will focus on different kinds of parallel systems in other words concurrent

systems.

(Refer Slide Time: 00:17)

We will start by describing by 2 kinds of parallel systems synchronous and asynchronous.

We will understand each of them through examples.

(Refer Slide Time: 00:32)

The content in this part of the module is taken from the lecture slides of Professor.

Supratik Chakraborty, IIT, Bombay.

(Refer Slide Time: 00:38)

Here is an example of a road intersection with 2 traffic light signals, light l1 and l2. Light

l1 is described by the transition system here, it has 3 states red, yellow, green. Similarly,

the traffic light l2 is represented by this transition system with the same set of states red,

yellow, green. However, they are interacting light l1 if it is in red can go to yellow only if

l2 is currently in its red state.

Similarly, l2 if it is red it can go to yellow only if l1 is in its red state. Here are some other

specifications if a light is red it can stay red for an arbitrary period, if the light goes

yellow it should become green within one cycle, what is that mean? the next transition

that l1 takes needs to be green, if it is green then the light can stay green for an arbitrary

period.

(Refer Slide Time: 02:03)

Let us now try to write NuSMV code for this system of traffic lights. We define a module

light which takes as input the state of the other light. Module light has variables state,

state can take 3 values red, yellow, green, denoted by r, y, g; the initial value of state is r.

Lets us now define the transitions. The next value of state is given as follows if the

current value of state is r and the state of other light is r as well then the light can either

stay in red or it can move to yellow.

This r is to denote the fact that it can stay red for an arbitrary period since other is r it can

also go to yellow. If the current state is yellow then the next transition that it takes should

make it green. If the state is green it can either stay green or it can go to red. In all other

cases there is no change in the state. This is the module light, how do we use this module

in module main? We define 2 variables tl1 and tl2 of type light; tl1 is instantiated with tl2

dot state, tl2 is instantiated with tl1 dot state.

This is the same as the NAND example which we saw in the last module. So, what work

the states of the transition system defined by this code d? We need to look at the variables

in module main, there are 2 variables tl1 and tl2, tl1 is of type light which has a variable

state, tl2 is again a variable of type light which has a variable state. So a state of this

combined transition will consist of the state of traffic light 1 and the state of traffic light

2. Each time we take the next transition both tl1 and tl2 would move.

That means this is a synchronous composition in every unit both tl1 and tl2 changed their

state.

(Refer Slide Time: 04:49)

In such a case what will happen? Let us see, we start with tl1 dot state and tl2 dot state

being red. In the next unit what are the possible transitions? Since tl2 dot red is true tl1

can indeed to take the transition to yellow. Similarly, since tl1 is red tl2 can indeed satisfy

this condition and take the transition to yellow.

We reach a state where both the lights are yellow. Once they are in this state in the next

transition both of them can become green. This is a scenario which we did not want this

is making both the lights become green simultaneously.

How do we get rid of this behavior? This does not model the system that we want. In our

system each of the lights move separately, at a time only one of the light should take the

transition. How can we model such systems using NuSMV?

(Refer Slide Time: 06:09)

Firstly, such systems are set to be asynchronous they are not it just means that they are

not synchronous. That means in every unit it is not necessary that both of them should

simultaneously take the next transition. In the next unit either light 1 can move or light 2

can move. To model such scenario we will define tl1 to be a process light of tl2 dot state.

This is the same however we define it with a keyword process.

Similarly, tl2 is defined as process light of tl1 dot state what happens when we define it

this way.

(Refer Slide Time: 06:54)

The initial state is going to be the same both of them are in red. In the next step one of the

lights is chosen to take its next transition. Here light 1 is chosen to take the next transition

since light 2 is red, light 1 can indeed moved to yellow. In this state yet again one of the

lights is chosen to take the next transition.

Suppose, we choose this it can go to green and the other light stays in the same state.

Again, we can choose one of the lights to take the next transition here again we choose

use light 1 it moves to red. Once again we are in the state where both of them are red.

Now the next step could be a choice between light 1 and light 2 here we have described

the situation where light 2 takes the next transition since light 1 is red it can move to

yellow.

Again, here we choose light 2 to take the next transition it becomes green and so on. In a

such case only one light can become green at a time. Let us try to run this example using

our tool.

(Refer Slide Time: 08:16)

Here is the code, see we have written tl1 to be processed light of tl2 dot state, tl2 is

process light tl1 dot state.

(Refer Slide Time: 08:29)

Let me run this example, when you run it you will get warnings which say that processes

are still supported but deprecated in the future processes may no longer be supported.

However, we will use this version of NuSMV the goal is to just understand the idea

behind a synchronous composition and the use of processes. If not NuSMV there are

other tools which support a synchronous composition like SPIN.

The ideas are going to be same, so as long as you understand this you can use any tool

that can support a synchronous composition. Let us come back to this example, lets us

check if all the executions satisfy the condition that both the lights are not green at the

same time. How do we check this?

If you remember we use the requirement f in the last module we will use that again. We

want to check that in every execution it is not the case that there is a state where both the

lights are green. NuSMV says that the specification is indeed true. Let us now try to

simulate and understand what happens inside the transition system. For start what are the

reachable states.

(Refer Slide Time: 10:21)

There are 8 sorry there are 4 states given by traffic light 1 is red, 2 is green, both are red,

first 1 is red and other is yellow, first one is green and other red, first one is yellow and

the other is red. So, there is no state where both are green. Let me now pick and initial

state there is only one initial state where both are red.

(Refer Slide Time: 10:47)

Lets us now simulate for some steps to understand what happens inside. We started with

both of them being red. Now, let me explain the available states there are actually 3

processes tl1 is a process, tl2 is a process and the main module is also considered to be a

process so main dot running is just written as running. If from this state where both are

red the selected process is tl2, then tl2 state changes see tl2 dot state becomes yellow.

(Refer Slide Time: 11:40)

Now, what is this state? rather let us see, if tl1 is the process then we know that process 1

can still stay in red. So that is what it has chosen this state is given by tl2 dot state equal

to r and tl1 dot state equal to r, process 1 has been selected and process 1 has chosen to

stay red.

(Refer Slide Time: 12:07)

There is another way of getting the same process where the process selected is main in

which case, both tl1 and tl2 do not change their states. In this example whenever main is

selected there would not be any change in the state. However, there could be examples

where main has other variables and those variables can change their values.

(Refer Slide Time: 12:31)

The other way of getting the state r r is when tl2 is selected but tl2 choose to stay red, i

hope this is clear.

(Refer Slide Time: 12:44)

Now what is other state from r r the other possible state is when tl1 dot state is y and tl2

dot state is r. Since it is not written here you have to see the previous state that is what it

means, tl2 dot state is r. This is obtained when tl1 is chosen and it chooses to go to the

yellow state.

(Refer Slide Time: 13:14)

Let me choose this state, now from tl1 dot state equal to y and tl2 dot state equal to r from

y r what are the possible successors? If tl1 is chosen it cannot stay in yellow it will

become green that is this state.

(Refer Slide Time: 13:33)

The other choice is if tl2 is selected since tl1 is yellow tl2 dot state will remain in red. If

main is selected there is no change in the state, so we get back to tl1 dot state equal to y

and tl2 dot state equal to r.

(Refer Slide Time: 13:57)

You can continue this and understand how the successors transitions are determined.

Each time one of the processes is selected either main t12 or tl1.

(Refer Slide Time: 14:16)

Let we summarize this idea of synchronous versus asynchronous systems. Synchronous

modules are defined this way. You have a variable and just instantiate it using the module

that you want. For Asynchronous composition you need to have the keyword process

before the instantiation.

When the modules are composed in a synchronous way all assignments to all modules are

made simultaneously in the next step. Such the composition suitable when all the

modules are synchronized to a global clock. The case of the counter and hardware circuit

which we saw in the previous module fits well with Synchronous composition.

In the case of Asynchronous composition, the execution of modules is interleaved at a

time only one module executes and the choice of the next module to be executed is

nondeterministic. This kind of a composition is suitable when no assumptions can be

made about the communication delay between modules.

There is no single global clock each of them works with its own clock and we cannot

make assumptions about the communication delay between the modules. This brings us

to the end of the first part.

(Refer Slide Time: 15:44)

We will now consider Mutual Exclusion. Recall that when 2 programs having a shared

resource are running in parallel. The mutual exclusion rule demands that they cannot

access the shared resource simultaneously. Sections of the program where the shared

resource is access are called critical sections. Mutual exclusion in other words demands

that the 2 programs cannot be in their critical section simultaneously.

(Refer Slide Time: 16:29)

Here is a model of 2 parallel programs. To ensure mutual exclusion there is an extra

global variable y which can be either 0 or 1. Each program can be in 4 states, its starts

with a noncritical state when it wants to access a critical section it goes into a wait state.

In the wait state it can enter the critical section if the value of this global variable y is

bigger than 0.

When it enters it decrements the value of y by 1. It can stay in its critical section as long

as it wants and when its about to leave it goes into an exiting state. From the exiting state

it goes back to the noncritical state in the process it increases the value of y by 1.

Program 2 is identical. Let us now try to write the code for these programs in NuSMV

and check if they can be in their critical sections simultaneously.

(Refer Slide Time: 18:11)

Let we write the NuSMV code from scratch. Let us define a module called thread which

takes as input a variable y. It has 3 locations so we define a variable location it can take 3

values either noncritical sorry it can take 4 values noncritical, waiting, exiting and

critical. What are the assignments? The initial value of location is noncritical the next of

location is determined as follows.

If location is noncritical the next location can either be noncritical or it can go to the

waiting state. If location is wait and the value of y is bigger than 0 then it can go to the

critical state. If location is critical then it can either stay in critical or it can go to the exit

state and in the exit if location is exit it goes to the noncritical state. What about y? Next

of y is determined as follows.

If location is wait then the value of y is decremented to y minus 1. So location is wait and

y is bigger than 0 then you make it y minus 1. If location is exit then we make it y plus 1.

How do we use this module thread in module main? we define the following variables.

We need to define a variable y let us give it a separate name lets call its a ymain it can

take the values 0 and 1.

There are 2 threads so program 1 is defined as process thread of ymain, program 2 is

again defined as process thread of ymain. We need to assign the initial value of ymain is

true which is 1.

(Refer Slide Time: 22:12)

Let us now execute this code in NuSMV. NuSMV minus int the name of the file and then

we say go, ignore the warnings but there seems to be an error. It says that case conditions

are not exhausted.

(Refer Slide Time: 22:35)

Yes, so we need to write if all these are not satisfied stay in the same location. Similarly,

if all these are not satisfied do not change the value of y.

(Refer Slide Time: 22:50)

Let us now run the new code there seems to be another error it says that cannot assign

value 2 to variable ymain.

(Refer Slide Time: 23:09)

We need to check this condition and y is strictly less than rather y equal to 0 then make it

y plus 1.

(Refer Slide Time: 23:23)

Let us now run it yes, we are successful.

(Refer Slide Time: 24:02)

Let us now check the requirement that in all executions program 1 and program 2 cannot

be in their critical sections simultaneously. In all executions it is not the case that there

exist a state where program 1 dot location is c and program 2 dot location is c and the

specification is true. Let us now simulated for a certain number of steps to understand

what happens inside.

 (Refer Slide Time: 24:15)

The initial state is when ymain is 1, program 1 is a noncritical location, program 2 is a

noncritical location.

(Refer Slide Time: 24:34)

From the first location from the first state it can go to a state where program 2 has gone to

waiting if process 2 rather program 2 is selected to move forward. It can go to a state

where both of them are noncritical. This is possible if the process selected is program 1 or

program 2 and they choose to stay in the same state. The other possibility is if the main

process is selected then we will still get to the same state.

(Refer Slide Time: 25:04)

I mean we have essentially not change state both program 1 dot location is nc and

program 2 dot location is nc.

(Refer Slide Time: 25:20)

If program 1 dot location is w and program 2 dot location is nc this means that the

process selected is 1 and it has gone to waiting.

(Refer Slide Time: 26:00)

Let me choose 4 now from where from the state w for program 1 and nc for program 2

we can move to the following states either the first location goes into the critical section

or both of them come to wait or program1 stays in wait and program 2 stays in

noncritical. Yes, for each of the states there is an explanation as to which process is

selected for the next transition you can keep experimenting with this.

(Refer Slide Time: 26:27)

We have therefore seen a demo of a mutual exclusion example.

(Refer Slide Time: 26:38)

In this module we have seen 2 things Synchronous versus Asynchronous systems and a

demo of Mutual Exclusion.

(Refer Slide Time: 26:47)

We will now see an example of a system of 3 parallel programs. We had seen this

example in module four of unit 1. The first program checks if less than 200 and

increments x as long as x is less than 200. This is the transition system corresponding

rather this is the program graph corresponding this is the program graph corresponding to

this program. 2 locations l1 and l2, l1 to l2 on x less than 200, l2 to l1 on l2 to l1 will set

x to x plus 1.

The second program decrements x as long as it is strictly bigger than 0 and the last

program checks if x equals 200 and resets x to 0. We want to know if the value of x stays

positive always. Let us now write the NuSMV code for this system.

(Refer Slide Time: 31:16)

The first program takes as input and integer x; i will call it x1. It has 2 locations so i

define a variable with name location it can take values 11, l2 and what are the

assignments from l1 it can go to l2 and if x is less than 200, from l2 it can go to l1.In the

process increments x to x plus 1 lets type that init of location is l1, next of location is

defined as follows.

If location is l1 and x1 is less than 200 then go to l2, if location is l2 then the next value

of location changes to l1.In all other cases do not change the location. What about the

value of the integer? The next of x1 is determined as follows. If location is l2 then the

value of x1 is incremented by 1 in all other cases do not change its value. Let's now write

the second program, it takes again as input one variable let's call it x2 here.

However we will finally call all of them using the same variable x we will see that later.

Again there are 2 locations m1, m2, How do the transitions look like? From m1 to m2 it

goes on x greater than 0, from m2 to m1 it resets it decrements x by 1. So, init of location

is m1, next of location is determined as follows. If location is m1 and x2 is bigger than 0

then the next location is m2. If location is m2 then the next location is m1 in all other

cases do not change location.

(Refer Slide Time: 31:46)

What about next of x2? If location is m2 then decrease x2 by 1 in all other cases do not

change x2. Now for the final program it has 2 locations n1, n2, What are the transitions?

If x is equal to 200 you can go from n1 to n2 in the transition n2 to n1 x is set to 0.

(Refer Slide Time: 34:21)

Init of location is n1, next of location is if location is n1 and x3 equals 200 then go to n2.

In all other cases remain wherever you are. What about next of x3? If location is n2 then

make it 0 in all other cases do not change it. Now is the time for the main module, we

will define a variable x NuSMV supports only bounded integers.

So, we need to give a bound for x i will give a loose bound saying that my x can range

from minus 1000 to 1000. Now we will define 3 instantiations of these programs, thread

1 will be process program 1 of x, thread 2 will be process program 2 of x and thread 3

will be process program 3 of x i have sent the same x to all the programs. However, since

x is a bounded integer we need to make a few changes to the conditions in the programs.

(Refer Slide Time: 35:14)

For example when we are doing this increment we should also check that x1 is less than

1000 and when we are doing this decrement we should check if x2 is strictly bigger than

minus 1000 because we know that x this x is can take values from minus 1000 to plus

1000 only and if they do not give these conditions then NuSMV would complain.

(Refer Slide Time: 35:27)

Let us also assign the initial value of x to be 0. Let us now run the code using NuSMV it

takes a while and it is done.

(Refer Slide Time: 36:08)

Let us now check if the value of x is always bigger than or equal to 0, g x bigger than or

equal to 0. It says it is false and it is given us an execution with 407 states. Let us now try

to understand what is happening. So, let's get first to the beginning of this execution.

Yeah, the counter example starts with the initial state where location of thread 1 is l1,

thread 2 is an m1, thread 3 is an n1 and the value of x is 0. Now the value of x is

incremented by thread 1 repeatedly for certain amount of steps.

(Refer Slide Time: 36:59)

So, x is incremented process 1 goes from l1, l2, l1, l2 and so on and x is getting

incrementing till x reaches 200 i guess. Let us check it you see it is the same l1, l2 l1, l2,

l1, l2, x is becoming 157, 159, x is becoming 198, 199 and now there is a slight change.

(Refer Slide Time: 38:19)

Process 2 is selected and it goes into m2. So, currently the states are l2, m2 and n1.

Process 1 is selected it goes to l1 and increments by 200. Right now the state is thread 1

is l1, thread 2 is n2, thread 3 is n1 and the value of x is 200.

(Refer Slide Time: 38:49)

So, now thread 3 can execute because there was a condition from going to go from n1 to

n2 it needed the value of x to be 200. So, right now thread 3 is in location n2 it can reset

its value to 0 once it's in n2 and then it should change back to n1. So the value of x

become 0 however, there is no change to the value of the location of thread 3.

(Refer Slide Time: 39:43)

Normally it should have gone to n1 let us now check the code. Right, we have missed in

the code to say that if location is n2 and sorry if location is n2 you need to go to n1. We

can run it with this now however there should be no change to the counter example. Let

us first understand this counter example, it goes to 0 and then thread 2 which is in n2

decrements it by 1 and hence the value of x becomes minus 1 so this is the situation.

(Refer Slide Time: 40:02)

 Let us now run the corrected code the requirement g x bigger than or equal to 0 should

be false even now and we should be getting a similar counter example let us check it.

Check ltl spec minus p g of x bigger than or equal to 0, its false and we seem to have

gotten the same example now with the corrected state as well.

(Refer Slide Time: 40:41)

Thread 3 dot location goes from n2 to n1 when x is set to 0. Notice that it is possible to

write models erroneously to some extent these simulations will help you identify the

errors white writing the models. However, there is some manual responsibility involved

in writing correct models. NuSMV will just ensure that if you give a model and give a

requirement it will check if that requirement is true on that model.

(Refer Slide Time: 41:18)

This brings us to the end of this module. We have seen 3 things the first was an example

of Synchronous versus Asynchronous systems, secondly we saw an example of Mutual

Exclusion. We checked it using NuSMV and finally we saw an example of Concurrent

Programs. We have seen how NuSMV can be used to check requirements on models of

these systems.

