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Memory Hierarchy Design (Part 4)

So, in the last module we discussed basic cache optimizations and now we are going to locate

some  advanced  optimizations  to  the  cache  memory.  So,  previously  we  considered  the

techniques to reduce the hit time, reduce the miss rate and reducing miss penalty, but now we

also add the bandwidth improvement techniques and the power minimization techniques to

this list.

(Refer Slide Time: 00:42)

So, first we start with reducing the hit time. So, to reduce the hit time we will consider small

and simpler caches. We also consider a technique called as way prediction and for increasing

the cache bandwidth we consider pipelined caches, non-blocking caches and multi-banked

caches, to reduce the miss penalty we look at techniques such as critical word first, early

restart  and  merging  right  buffers.  And  for  reducing  the  miss  rate,  we  look  at  compiler

optimization, optimization from the software not from the hardware itself.

And  also  we  look  at  the  prefetching  techniques,  both  the  software  and  the  hardware

prefetching techniques for reducing the miss penalty or the miss rate. So we start with hit

time reduction techniques.



(Refer Slide Time: 01:40)

So, we know that  a cache consists  of a tag array, data array, a decoder  and set  of other

components for performing a read or write operation on it and it supplies the data to the

processor. So, from the time the processor issues address to the cache, to the time at which

the cache supplies the data. So, there are several components involved in it. And each of these

components are going to consume some time and the overall time is going to determine your

hit time.

So, effectively cache access consists of going through the set decoding, tag comparison, data

read  and  data  out.  When  I  say  tag  comparison,  it  consists  of  tag  array  read  and  then

comparing with the tag in the address of the memory request. So, effectively if the size of the

cache is large, automatically our word line length will be increased and bit line length will be

increased and similarly, the decoder width can increase and because of all these things out

overall access time is going to increase.

To reduce the cache access time we have to reduce each of these things. But before that we

look at what is the actual access time for a given size of the cache with a given associativity.

To do  that  we actually  consider  a  tool  from HP is  called  a  CACTI  and  which  actually

provides the access times for the cache memory as well as the DRAM based memory. And it

also provides area as well as the energy consumption and these energy values will be given

for each of the components in the cache. So, first we start with the access time and here this

graph shows different sizes of the caches starting from 16 kb to 128 kb.



And we considered  one way that  is  a  direct  mapped cache,  a  2  way, 4  way and 8 way

associative caches. And we also assumed that the entire cache is a single bank. And so we

consider one read write port per bank and we model the entire cache using 32 nanometer

process technology. Remember for different process technologies, the access times and the

energy  values  are  different.  So,  for  our  calculations  we  consider  32  nanometer  process

technology.

From the graph, we can clearly see that for a fixed size cache, for example - consider a 16 kb

cache, if I increase the associativity the access time is increasing. And similarly, for a fixed

associativity, for example - consider a 2 way associative cache and as I increase the size of

the cache access time is increasing. That says that having a simple cache, with the size of the

cache is small then, we are going to get a better hit time. But remember if I reduce the size of

the cache or if I reduce the associativity of the cache, the capacity misses or the conflict

misses can increase.

So, effectively when you want to freeze in a particular associativity and the size, you have to

look into all these things also into consideration. So, as I mentioned earlier that the entire

computer architecture course is effectively a design space exploration. You have to explore all

these things and then finally come up with a better design point. So, because these decisions

have to be taken before, much before, actually fabricating the chip.

So,  for  these  things,  for  modeling  these  things,  we typically  use  simulators.  And in this

particular case we consider a CACTI tool. So, this shows that access time is reduced if I

consider a small size cache with a smaller associativity. Now, we look at the energy point of

view. Again we consider only the dynamic energy, whenever we perform any access, this

access is going to consume some energy and that energy is called the dynamic energy. If I

increase the size of the cache for a fixed associativity the energy is increasing.

The reason is  as the size of the cache increases because our, the bit  lines as well  as the

decoder length is going to increase and that is actually contributing to the increased dynamic

energy. And similarly, if I consider a fixed size cache, but I increase the associativity, then

also the energy is increasing. This is mainly because our, as the associativity increases our,

word line length is going to increase and that is actually contributing to more energy. And

also another point is because here we are considering, accessing both the tag and the data

simultaneously.



As the associativity  increases our data  access energy contributing to  the overall  dynamic

energy is increased. So, this also shows that to reduce the overall energy of the cache, we

have to go for smaller and simpler caches. By the way, the details about the CACTI tool and

how to download and the technical report about the CACTI tool and how it works and so on

are available in this particular website.

And it is an open source tool anyone can download and play with the cache simulator for

different  configurations  and  you  can  see  so  how  each  component  in  the  overall  cache

contributing to the overall energy and the overall access times and so on.

(Refer Slide Time: 08:30)

So, the second technique to reduce the hit time is a prediction mechanism. Consider an 8 way

associative cache. We know that if at all the data is present in the cache, it will be present in a

particular set, that too only one way of that particular set. So, once we know that the data can

be there at most in one way why are we accessing all the ways. If we are going to access only

one way, we can perform these in a direct mapped mechanism. So, accessing one way is

going to take less amount  of time compared to accessing all  the ways,  but to  do this  or

prediction mechanism should be very accurate.

As long as our way prediction mechanism is accurate, we are going to reduce the overall hit

time, but what happens if our prediction is wrong. When the prediction is wrong then we

have to search all the other ways of that particular selected set, to see whether processor

request can be serviced by this cache or not. If even those other ways also incurs a miss then



we have to go to the next level cache or the memory to supply the data, but now the overall

performance of this way prediction technique depends on the prediction accuracy.

Higher the accuracy we can improve the hit rate significantly and the overall performance can

be improved. If the accuracy is very bad then automatically for most of the requests we are

going to incur multiple accesses. First is access for the direct mapped cache type of access

and the second one is, for the all the remaining ways. Because this is going to increase the

overall time, because the first one is we are going to access a selected way, followed by all

the other ways as long as our prediction is giving a negative result. 

So, when we want to use this way prediction mechanism we have to come up with high

accuracy  way  prediction  mechanisms.  And  whenever  there  is  a  miss  prediction  as  I

mentioned earlier the overall hit time is going to increase significantly. And also as long as

the way prediction is going to give you high accurate results, then we do not have to access

the  remaining  ways  in  the  data  array  portion  of  the  cache  that  reduces  our  energy

consumption also.

And typically this way prediction technique produces high accuracy in the case of instruction

caches.  As instruction request exploit more spatial locality, but in the case of data caches

requests may exhibit not so high spatial locality. So, the way prediction techniques may not

be effective.

(Refer Slide Time: 11:20)



Now, we look at pipelined caches to improve the overall bandwidth. So, we know that a

cache access goes through several components. The first one is we will go to the set decoder,

then the tag array access then comparing the tags with the tag in the address and then access

the data array. And then read the data and finally, apply the block offset to get the requested

word. And effectively all these components are independent to each other. So, we can simply

apply our pipelining concept.

By  the  way,  we  are  going  to  discuss  these  pipelining  concepts  in  the  unit  3  that  is

fundamentals of pipelining. And we will see how pipelining improves the overall throughput

of the bandwidth. Of course, we consider the instruction pipeline there, but the pipelining

concept can be applied for any component.  So,  here in this  particular case we apply the

pipelining concept to the caches.

So, we divide this entire cache into multiple pipeline stages. And 2 subsequent stages are

separated with a pipeline register. So, whatever the data we read from one particular stage

will be stored in the intermediate pipeline register and that will be given to the next stage and

it continues. So, here in this particular case we consider a 4 stage pipeline, but if you consider

different Intel processors Pentium was using 1 stage pipeline.

So, entire cache was considered as a non-pipeline, Pentium pro to Pentium 3 were using 2

cycle pipeline cache because as the capacity of the cache increases, we know that the access

time is going to increase. And if we keep this entire thing as a single pipeline cache then it is

having  an  impact  on  the  processor  frequency.  To  reduce  the  impact  on  the  processor

frequency one option is we have to go for a pipelining of this cache. And that is what they

have considered in Pentium pro to Pentium 3. And in Pentium 4 they were considering 4

cycle  pipeline  cache  and that  is  still  continued even core  I7  processors  which  are  latest

processors from Intel, which also uses 4 stage pipeline cache.

Of course, it improves the bandwidth and also it gives an option for us to go for increased

associativity in the cache. Especially, when we are dealing with the parallel mode of access in

the  cache,  when we have  a  higher  associativity, we discussed  earlier  with  the  increased

associativity, the access energy is going to increase significantly, but when we consider a

pipeline cache because our tag array is accessed before the data array access. So, as a result

based on the hit specified by the tag array access, we are going to access only the required

way in the data array portion of the cache.



So that the energy consumption will not be significant and that gives us an option to increase

the associativity. So, there are advantages with the pipeline caches, but it also gives some

disadvantages. Especially in the case of branch miss predictions and again we are going to

discuss  these  branch  predictions,  branch  miss  predictions  when  we  come  to  the  unit

corresponding  to  exploiting  instruction  level  parallelization.  Because  once  we  predict  a

branch that is going to take place and we fetch the instructions and pump these instructions

into the instruction pipeline, but after some time if we realize that the predicted branch is

incorrect  then automatically we have to  flush the entire  pipeline.  But  as we increase the

pipeline stages  for this  cache that  also increases the overall  pipeline stages  of the entire

processor.

So,  as  a  result  our  penalty  due  to  miss  predictions  in  the  branches  is  going to  increase

significantly in our pipelined caches. So, that is the reason why when we are considering

these pipeline caches, we have to be careful enough to consider how many stages we have to

consider so that branch miss prediction penalty is not significant.

(Refer Slide Time: 16:10)

So, now we will consider non-blocking caches. So, first consider a blocking cache, where

when a processor issues a load or a store request, request goes to the L1 cache and if the L1

cache cannot supply the data for a load request from the processor, it sends the request to the

memory and while the request is serviced from the memory, cache will not take any more



requests  from the  processor. If  the  cache  is  working in  this  mode then  this  is  called  as

blocking cache. Cache is blocked for previous request to be serviced.

Until  the  previous  request  is  serviced  the  cache  cannot  take  anymore  request  from the

processor. And we know that servicing a request from a memory is going to take significant

amount  of  time.  So,  as  a  result  the  blocking  mode  of  cache  degrades  the  processor

performance  significantly.  And  all  the  current  processors  are  typically  consider  a  non-

blocking mode of operation. So, what is a non-blocking cache? So, consider example where

there are 2 load request, generated by the processor.

And then there is an add operation on the data what we read from the previous load request.

And assume a scenario where the first load request is a miss in the cache, but the second load

request is a hit. So, in the case of blocking caches, even when the second request is supposed

to be hit in the cache, we cannot process this request. But when I consider a non-blocking

cache, while the previous request is a miss in the cache, the cache supplies this miss request

to the memory.

And while memory is supplying the data for this miss request from the cache and the cache

accepts the next request that is Load R2, Y and ‘Y’ is a hit in the cache. So, the second load

request is a hit in the cache. So, the cache supplies the data for the second load request to the

processor. While it is transferring data to the processor, memory supplies the data for the

previous load request. To do these non-blocking operations, all we have to do is, we have to

maintain some set of buffers, which are called as miss status handling registers.

Whenever there is a miss in the cache, we report an entry in this MSHR and send that request

to  the memory. So, all  the requests  which are miss in  the cache,  will  be reported in the

MSHR. And an entry is made in MSHR and based on the availability of the memory, MSHR

will read one entry at a time in the order and it supplies this data request to the memory and

memory will process that particular request.

And  whenever  the  memory  supplies  the  data  again  this  data  is  searched  with  the

corresponding address in the MSHR and matching entry will be deleted from the MSHR and

the data is supplied to the L1 cache. So, as a result we can improve the performance of the

overall system. So, it allows hits before previous misses it is also called as hit under miss or

hit under multiple misses.
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And  we  can  improve  the  bandwidth  by  designing  cache  in  a  multi-banked  width.  For

example, consider a cache which is designed as a single bank or a monolithic cache. And

there are several request, load request from the processor. And we have considered this in this

particular example, the cache is colour coded and the request also colour coded. So, that the

colour of a request which is matching with a portion of the cache indicates that this request is

satisfied by that particular portion of the cache.

So, when you have a single monolithic cache. So, we have to service these requests one after

another. Here the assumption is our cache can take at any point of time only one request. Of

course, we can service multiple requests by using a single monolithic cache, but we need to

have a support of multi-ports. If we have multiple read ports for the cache, then the cache can

service multiple requests simultaneously. As long as these requests are not colliding with the

same address or as long as these requests are not conflicting with each other, but a multi-

ported cache actually increases the overall energy as well as the access time.

So, may be you can consider this CACTI tool and consider multiple ports and see what is the

access time versus considering a single port. You can understand the statement what I said

previously that multi-ported caches takes more access time as well as increases the access

energy. So, the other option is without increasing the energy as well as without increasing the

access time, we can improve the bandwidth by dividing this cache into multiple bands like

this.



So, we divided the cache into multiple banks. So, that the request generated by a processor

will be steered to particular bank based on the address match. Of course, it is going to add a

steering logic time when a request comes from the processor we have to see which bank the

request can go. And then we will send the request to the corresponding bank. So, that, that

particular bank can service the request.  Once we have 4 banks,  this  cache can service 4

requests simultaneously. And each bank can have one port. So, ports we are not increasing.

So, as a result it is not increasing the access energy and access time. And since multiple banks

can  service  the  request  parallely  so,  we  can  improve  the  overall  bandwidth.  So,  if  you

consider Intel core i7 processor, it supports 4 banks for L1 cache, 8 banks for L2 cache and as

I said earlier, it reduces the power consumption associated with this multi banking.

(Refer Slide Time: 22:57)

So, now consider another method, the critical word first. So, in a normal the cache when there

is a miss in the L1 cache, we go to memory and memory is supplying the entire block of data

to L1. So, after the entire block is loaded into L1 then L1 cache supplies the requested word

to the processor. And consider a scenario where our block size is 64 bytes. So, until the data

is  available from the memory to the L1, L1 cannot supply the data to the processor, but

actually processor is waiting for only 64 bits of data.

And it is not waiting for the entire 64 bytes of data to be transferred from memory to the

cache. So, as a result what we can do is, when the request is sent to memory from the L1

cache,  we  identify  the  location  in  the  particular  address  location.  We  identify  the



corresponding block in the memory and we will go to that block and we take the requested

word and transfer this word to the L1 cache and which in turn supplies this requested word to

the processor.

While it is transferring the remaining words will be transferred one after another. Remember,

memory cannot supply all 64 bytes of data in single cycle to the L1 cache. It happens bit by

bit, it typically transfers couple of words in one cycle and then reads the next couple of words

of data and so on. So, as a result there is a serialization happens when we are reading the data

from memory block in the memory. So, it is going to take significant amount of time. And to

minimize this penalty, the miss penalty, we can supply the requested word that is the critical

word, which is required by the processor as early as possible. So, that processor can resume

operations of a following request while the memory is supplying the remaining things.

So, we are effectively overlapping memory transfer time with the processor computation time

so, that the overall CPU time can be reduced. This is one way of doing that the other one is,

we can go for early restart. Without reordering our the byte transfers we continue transferring

data from memory to the cache, byte by byte in the sequence, but as and when we come to

the critical word, that is required by the processor or the word which is addressed by the

processor. We supply that to the L1 cache and L1 cache immediately transfers that data to the

processor.

So that, we can overlap the remaining byte transfers from the memory to the L1 cache with

the processor computation. So, the early restart is simple to implement, but it may not overlap

the operation significantly. Whereas, the critical word first overlap memory transfer time with

the CPU computation time, but it is a bit complex. You have to reorder the things and you

have to locate the critical word and then transfer that and place that in an appropriate location

in the cache block.

And then rearrange the remaining words coming from the memory into the cache. So, the

operations are bit complex in the critical word first. But anyway so the benefits of this critical

word first  are early restart especially depends on the block size as well as the chance of

having further requests into the remaining portion of the block, which is not yet transferred

from the memory.

If the block size is, let us say, a one word, you do not critical word first for early restart. Of

course, a one word block we are not we are not going to consider because of the performance



reasons and so on because to  exploit  the spatial  locality  we consider  multi-word blocks.

Because as the block size increases our transfer time increases. So, if we send the critical

word first,  we can improve the performance.  And again,  for example,  if  the processor is

requesting the last word of a cache block, which incurred a miss in the L1 cache. 

So, we send the request to the memory and we are supplying the critical word first, that is the

last word is supplied to the cache first and which in turn supplies the data to the processor.

So, processor is going to resume with the remaining operations, but the remaining operation

is another load request which is to the first word of that particular block and which is not yet

transferred. So, then what is going to happen is, the processor is again incurring another miss

and so on. So, effectively this all depends on the overall performance of these 2 techniques

depends on the block size as well as what is the probability that, the processor generates a

request to the non-transferred words of this particular block. So, another way to reduce the

miss penalty is considering the merging write buffers. We already discussed the write buffers.

(Refer Slide Time: 28:35)

Typically the size of the write buffer is very limited may be it  consists of 4 entries or 8

entries. And each entry can store 4, 64 bits data. Now, consider a scenario where we have a 4

entry write buffer and each entry is storing 8 words of data and each word is 64 bits here.

Now, processor generated write request and these are to different addresses, one is address

location 100, the next one is address location 108, 116, 124. And assume that our cache is

designed as a write through cache. So, whenever we are performing these write operations.



So, we are writing to the L1 cache as well as we are writing to the write buffer between the

L1 and the L2 cache.

So, as and when the processor issues a request for address location 100, we write to the

corresponding location in the cache and also we dedicate one entry for this address location

100. After that a processor generated a next write request which is to the next address 108. It

will be written to the cache in the appropriate location and also next entry is allocated in the

write buffer and the data is written to that particular thing.

Similarly, there are 2 more requests,  after  4 requests  no more space is  there in the write

buffer. So, that if there is any further write request form the processor, we cannot continue

further, unless we make some room in the write buffer. To make a room in the write buffer,

now we have to take an entry from the write buffer and write it to the lower level caches and

free that entry. So, that processor can resume with subsequent write requests. So, this is the

normal  way  of  performing  operations  on  the  write  buffers,  but  if  we  provide  some

intelligence to our processor such a way that, whenever there is a next request comes from

the processor.

We just compare that address with the modified entry in the write buffer, to see whether this

address can be merged with the previous addressed data. So, that is called as merging write

buffers. If you see this example, the processor is writing to the address location 100, address

location108, 116 and 124. So, if we merge all these things and still we can say like, processor

is  writing  to  address  location  100  but  to  different  components  in  that  and  all  these  are

contiguous.

So, we just give one entry in the write buffer. So, that the remaining 3 entries in the write

buffer are free and whenever L2 cache is free we take this entry and we write all these things

together to the L2 cache. Also writing large chunk of data to the lower level caches is much

efficient compared to writing one word at a time. So, that way also we can reduce our overall

miss penalty. So, when storing to a block that is already pending in the write buffer update the

write buffer.

So, this is the overall idea of merging write buffer concept. But this technique cannot be

applied  for  I/O  addresses  because  the  addresses  of  I/O  registers  are  not  contiguous  in

memory. So, as a result  we cannot  apply for the IO addresses and this  write merging is

typically  applied for  only the addresses which are contiguous in  the memory as  like the



example shown in this file address 100, 108, 116 and 124. These are contiguous and we can

apply our write merging peacefully for this. So, in order to improve the overall performance

we can also take the help from the software. So, that is we can exploit compiler optimizations

in improving the performance of the cache memory. A simple example is loop interchanges.

(Refer Slide Time: 33:03)

Consider a case - we have an operation performed on 2 dimensional array, where we have a

nested loop. 

                                     
For ( j=0 ; j<100 ; j+= 1 )

For ( i=0 ; i<5000 ; i+= 1 )

     X [i ] [ j ]=2∗ X [i ] [ j ]

The data is stored in the memory in such a way that it follows this order x[0][0], x[0][1], x[2]

[2] and. So, on x[0][99] then x[1][0], x[1][1],  x[1][2] and so on x[1][99] and it continues.

When we store the data in that order in the memory, but if we apply this particular code what

is going to happen is, we access x[0][0] first, then we are going to access x[1][0].

Note that x[0][0] and x[1][0], these 2 are separated by 100 words gap. And these 100 words

cannot fit into a single cache block. So, as a result we incur a miss for the second request and

then we have to bring in that block into the cache and then supply the data to the processor to

perform this operation. So, as a result the spatial locality cannot be exploited efficiently, if we

consider this particular piece of code. To increase the spatial locality we can just interchange

these loops.



So, that the for( i=0; i<5000; i++) will come first, followed by for ( j = 0; j < 100; j++). So, as

a result we now request the data which is like x[0][0], x[0][1], x[0][2] and so on. So, when

we bring in a block of data to service first data item, we also bring in subsequent multiple the

elements of that array. So, that when a processor requests that particular data it will be hit in

the L1 cache and which improves the overall performance.

And typically most of the scientific applications you can see that there are so many loops and

compiler can optimize these loops efficiently. Also we can consider the blocking mechanism.

So,  consider  a  matrix  multiplication.  So,  in  this  the  elements  of  matrix  z  are  repeatedly

accessed and then the elements of the other 2 matrices. And in this particular example we

consider colour coding where the dark shaded blocks indicates that these are the elements in

the matrix, which are recently accessed and the light shaded ones are accessed but not so

recently.

And white blocks indicate that these are the elements that are not accessed at all in those

corresponding matrices. So, effectively if I consider a normal matrix multiplication then our

accesses will be all over the arrays. And as a result caches cannot the exploit the locality. And

the cache space cannot be efficiently utilized to perform these operations, but whereas, if

consider the matrix multiplication in a block matrix multiplication method, where we divide

the matrices into smaller blocks and we perform the multiplications on those things.

And if we do that, then our access patterns will be confined to smaller regions in the memory.

So that  these accessed  elements  can be efficiently  kept  in  the  cache memory which can

improve the locality and cache performance can be improved significantly. And finally, we

can consider a prefetching method, what is Prefetch? Prefetch is fetch the data before the

processor requests that particular data. Typically whenever processor wants the data it issues

a load request to the cache.

So,  that  the cache will  look at  that  address and search in that  cache with that  particular

address and if the data is available in the cache. So, it supplies the data to the processor. If the

data is not there for that particular address location in the cache, it goes to the next level and

which  may  take  several  cycles.  And meanwhile  processor  is  sitting  idle.  To reduce  this

penalty we can actually issue these load requests early in advance, but for that we need to

predict which are the load request processor is going to generate in future. So, for that we can

take the help of hardware or software. Effectively, we can come up with hardware prefetching



techniques  or  software  prefetching  techniques.  In  the  case  of  hardware  prefetching

techniques.

(Refer Slide Time: 38:20)

We can consider  stream based prefetching or  stride  based  prefetching.  We provide  extra

hardware with the processor and this hardware keeps track of what is the access pattern that

happens for the given application, when it is executing on the processor. And these access

patterns  can exhibit  stream based accesses or  stride based accesses.  Depending upon the

aggressiveness of the prefetching it can either prefetch one block or it can prefetch multiple

blocks and so on. So, typically this prefetching happens at a granularity of cache block.

When there is a miss happens for one particular block, if it is stream based prefetching it

prefetches  subsequent  blocks  to  that  particular  address.  In  the  case  of  stride  based

prefetching,  sometimes applications  access not the contiguous locations,  but with a  fixed

stride distance. In the stride based prefetching is typically the access patterns are following a

particular stride, a stride of 10 bytes, a stride of 20 bytes, a stride of 100 bytes or something.

So, our hardware prefetching unit captures this stride difference and whenever there is a miss

to particular address block, this hardware prefetching unit which is implementing stride based

prefetching, adds the stride difference to the previously missed address. And it prefetches the

corresponding block into the cache. So, that when the processor actually requests the data the

data  is  available  in  the  cache.  So,  as  long  as  the  prefetching  method  is  working  fine,

processor can improve performance significantly because all processor requests can get a hit



in the cache memory, but too much aggressiveness applied in the prefetching can result into

performance penalty also.

Effectively, if you are prefetching logic is not efficient, this is going to pollute the cache

which is in turn increases overall miss rate. So, as a result we need to come up with efficient

prefetching methods, such that there is no significant pollution in the cache. And also the

processor when it requests the data the data is available. So, without increasing the conflict

miss rate of the useful data we have to keep our prefetched blocks into the cache.

And also another reason, another thing we have to consider with the prefetching logic is

because  the  prefetched  request  can  be  competing  with  actual  demand  request  from  the

processor, when we are accessing the L2 cache memory and so on. So, again we have to give

priority for a demand request, as processor is waiting for these demand request to be services

as early as possible than servicing the prefetch requests.

Another reason is we are not sure whether the prefetch request may be actually required by

the processor in the future and so on. So, we have to keep all these things into consideration

when  we  are  dealing  with  the  prefetching  logic.  And  the  current  processors  have  these

hardware prefetchers at L1 and L2 and because these prefetching can sometimes degrade the

performance. So, these processors also provide a mechanism to turn off this prefetching.

So, we can turn off prefetching and then execute in a normal way. If the applications are

going to exploit the benefits of these prefetching, then we can turn on in those cases. So, this

is about the hardware prefetching, but we also have software prefetching, where the compiler

can insert these prefetched requests by looking at the access patterns. So, the advantage with

the software prefetching is, we do not have to incur extra hardware, but the disadvantage is it

is going to increase your instruction count.

So, once we have this software prefetching, we can actually apply this software prefetching

either for prefetching the data into the cache or prefetching the data into a register. If I am

prefetching the data into a register it is called register prefetching, if I am prefetching data

into  a  cache  it  is  called  as  a  cache  prefetching.  And  we  can  also  apply  the  software

prefetching along with other compiler optimizations,  such as loop unrolling and software

pipeline. Loop unrolling is a concept where a loop is unrolled.

For example, if I have a for loop, 



                
For (i=0 ; i<100 ; i= i+1 )

A [i ]=B [i ]∗C [i ]

So, what I can do is, I can unroll the loop by 5 times such that my for loop will be,

                                         

For ( i=0 ; i<100 ; i+=5 )
{

  A [ i ]=B [i ]∗C [ i ]
  A [ i+1 ]=B [i+1 ]∗C [ i+1 ]
   ...
  A [ i+4 ]=B [i+4 ]∗C [ i+4 ]
}

Effectively  previously  we considered  one  instruction  in  the  body of  the  for  loop,  in  the

original the loop.

When we unroll the loop 5 times, we inserted 5 instructions in the body of the for loop and,

reduce the, adjust the loop iterations accordingly. And we can exploit the cache benefits when

we apply this loop unrolling. So, these are the simple technique typically most of the current

day  compilers  apply  to  improve  the  overall  performance  in  executing  the  loops.  And in

addition to that we can also apply software pipelining.

The software pipelining is similar to a hardware pipelining, where for example, the loop body

of a for loop has a dependency in executing the instructions. Now, when we apply software

pipelining,  we  can  unroll  the  loop  to  a  certain  extent  and  then  exploit  the  independent

instructions in this extended loop body. So, that once we have independent instructions we

can perform these operations simultaneously. So, this is the simple concept considered in

compilers  as  an  optimization.  So,  we can  apply  this  software  prefetching  mechanism in

addition  to  these  loop  controlling  and  software  pipelining  to  improve  the  overall

performance. So, with this I am concluding this cache unit section.

Thank you.


