
Computer Architecture
Prof. Madhu Mutyam

Department of Computer Science And Engineering
Indian Institute of Technology, Madras

Module – 03
Lecture - 08

Memory Hierarchy Design (Part 3)

So, in the last module we discussed the basics of cache memory. And now in this module we

are going to look at basic cache optimizations. So, we know that once we have cache memory

the overall performance can be improved. In other words, the cache memory can reduce the

average memory access time. So, if you look at the formula to calculate the average memory

access time, it can be given as,

           Averagememory access time=Hit time+Missrate∗Miss Penalty

So, the hit time is the time it takes to service a request, if the request is hit in the cache. And if

the request is a miss, then we are going to incur a miss penalty because we need to get the

data from the main memory or the lower level caches. And the miss rate is defined as the total

number of misses incurred per the overall memory access. So, given this average memory

access time formula, now to optimize the caches, in other words to improve the AMAT, we

have to either reduce the hit time or reduce the miss rate or reduce the miss penalty. So, we

look at the techniques which will reduce each of these components, reducing the miss rate.

(Refer Slide Time: 01:42)



So, cache miss rate can be reduced by increasing the block size or making the cache bigger or

increasing the associativity. And we will see what happens to different types of cache misses

when we increase the block size associativity or the cache size. We already discussed in the

previous  module  the  cache  miss  classification.  The caches  can  have  compulsory  misses,

capacity misses and the conflict misses. The second one is to reduce the miss penalty. So, in

order to reduce the miss penalty, we can go for multi-level cache hierarchy. Rather than one

level of cache maybe we can go for two levels or three levels of cache memory between

processor and the main memory.

And we will see, what is the impact of this on the overall miss penalty, or if we give priority

for reads we can improve the overall performance of the processor and we will see how to

implement  such  technique  and  finally,  to  reduce  the  hit  time.  So,  we  avoid  address

translation.  Especially,  in  the  case  of  systems  with  virtual  memory  support,  processor

generates virtual address and that virtual address needs to be translated to physical address

and this translation is going to take time. And how can we eliminate this address translation

from the  overall  access  time  so,  that  we  will  discuss  at  the  end.  So,  we  start  with  the

techniques to reduce the miss rate. If I reduce the capacity so, the size of the cache is reduces

then what happens?

(Refer Slide Time: 03:36)

So, we know that there are three types of misses the cold or compulsory misses, capacity

misses and conflict misses. We already discussed in the previous module that the cold misses



are not dependent on the size of the cache. Even when you have 16 kb cache versus 128 kb

cache your cold misses are the same in both the cases, but whereas, in the case of capacity

misses, as I reduce the size of the cache automatically the capacity miss rate is going to

increase because you have smaller size of the cache.

So, it keeps only limited amount of data in the cache. So, as a result applications may have

increased capacity misses. In the case of conflict misses may increase the miss rate because

of the reduced capacity. So, let us assume that the block size is constant in two caches one is

with 64kb and the other one is 128kb when I go from 128kb cache to a 64kb cache as the

block size is same.

So, we are going to have reduced number of cache blocks and because of that the application,

if it is accessing random data which is located at different locations in the memory. So, there

is a chance of increasing the conflict miss rate. So, in overall if I reduce the size of the cache

the overall miss rate may increase. If I consider the opposite to this which is like increasing

the capacity of the cache again there is no impact on the compulsory misses, but the capacity

misses as expected is going to reduce.

In the case of conflict misses as I increase the cache size the number of blocks the cache can

accommodate is going to increase and which in turn may reduce the overall conflict miss rate.

Effectively the overall miss rate may decrease if I increase the size of the cache. So, this is

about increasing or decreasing the size of the cache. Now we will look at the block size. If we

reduce the block size for example, if I consider 64 byte block versus a 32 block byte. So, in

the case of  64 byte block,  I  am going to  bring for  example,  16 words of data  from the

memory where each word is of 4 bytes. In the case of 32 bytes I am going to bring only 8

words. So, we know according to the definition of compulsory misses a miss that occurs

when first reference to a word and the cache is empty.

So, when I bring in the data, so I am servicing the first compulsory miss, but after that if I

have a 64 byte block, I am going to bring another 15 words along with this missed word.

Whereas, if I consider a 32 byte block I am going to bring only 7 words along with this

missed word. So, as a result if I reduce the block size there is a chance of increasing the cold

miss rate. And in the case of capacity misses, if I keep the size of the cache same, but the

block size is reduced. So, as a result the number of blocks stored in the cache is going to

increase. And as a result the overall capacity misses may decrease.



Similarly, in the case of conflict misses, because the number of blocks stored in the cache is

increased by reducing the block size, the conflict miss rate also can decrease. So, effectively

the  overall  misses  varies.  The  same  time,  if  I  for  example,  increase  the  block  size  the

compulsory misses are going to reduce, but in the case of capacity misses it may increase.

Similarly, the conflict misses also may increase with the increased block size because as the

block size increase the number of blocks stored in the cache is reduced. And if the application

is exhibiting or accessing the data which blocks to different blocks in that scenario because

the  number  of  blocks  stored  in  the  cache  is  reduced  now as  a  result  these  misses  may

increase.

Finally, if I alter the associativity of the cache, if I reduce the associativity there is no impact

on the cold misses and there is no impact on the capacity misses because of the size of the

cache is still same. And in the case of the conflict misses as the associativity is reduced the

conflict miss rate may increase because the conflict miss rate is defined with respect to the

misses happened with a set. So, as the associativity is reduced so we have less options to keep

new block into the cache so we have to evict the existing data. So, as a result the overall

misses may increase and when I increase the associativity the conflict misses may decrease,

the capacity misses has no impact and similarly, the cold misses also there is no impact with

respective to the associativity. 

So, as a result like, so in order to reduce the cache miss rate if we just opt for one of these

things either reducing the size or increasing the size of the cache, reducing or increasing the

block size or changing the associativity there is an impact on the other type of cache misses

when we are trying to reduce the miss rate of one type of a misses. So, we have to look at all

these things and based on that we have to take a decision. But again among all these three

types of misses the cold misses contribute very least number of misses to the overall misses

and  conflict  misses  are  predominant.  So,  we  have  to  look  at  the  conflict  misses  and

accordingly we can take the decision.



(Refer Slide Time: 10:50)

To reduce the miss penalty, we can go for multiple levels of cache hierarchy. So, we keep

multiple caches between our first level of cache and the memory. So, that whenever there is a

miss in the first level of cache rather than going to memory we may get a hit in the next level

of the cache. In this particular example we consider two levels of caches followed by main

memory. So, we know that,

                Miss _ PenaltyL 1=Hit _ timeL2+Miss _ Rate L2∗Miss _ Penalty

So, when there is a miss in the L1 cache now we are going to get the data from L2 as long as

L2 supplies the data, if L2 cannot supply the data, we have to go to the main memory. 

             Miss _ PenaltyL 1=Hit _ time L2+Miss _ Rate L2∗Miss _ PenaltyL 2

So, now we substitute this miss penalty of  L1 in our original AMAT equation. So, AMAT for

two level cache is,

                AMAT 2 Level=Hit _ timeL1+Miss _ RateL1∗Miss _ penalty L1

AMAT 2 Level=Hit _ TimeL1+Miss _ RateL 1∗ ( Hit _TimeL 2+Miss _ RateL2∗Miss _ Penalty L2 )

So, remember that here we consider the miss rate of L1, miss rate of L2, but we know that the

definition of miss rate is the total number of misses incurred by a particular cache to the total

number of memory requests coming to that particular cache.



So, as a result for the first level of cache that is L1 cache, all the memory request issued by

the processor will come to L1. So, in that case our miss rate of L1 is the actual miss rate seen

by the processor at the level 1 cache. The total number of memory accesses seen by L2 is

nothing but the total number of misses generated by L1. So, effectively,

                   Local _ Miss _ RateL 2=
Total number of misses incurred by L2
Total numberof misses generatedby L1

So, we have to define the other term which is a global miss rate seen by the processor and in

the case of level one cache our local miss rate or global miss rate is same because is the first

level of cache where all the memory request generated by the processor will be seen by the

L1 cache, but in the case of L2 the number of memory requests seen by L2 is nothing but the

number of memory requests misses happen in the L1 cache. It is not the number of memory

requests issued by the processor. So, effectively the global miss rate of L2 is nothing but the

miss rate of L1 times the miss rate of L2. Now once you have multiple levels of caches. So,

how do we organize these caches? So, a straight forward way is considering inclusive caches.

In the case of inclusive cache the data that is there in L1 must be there in level two cache that

is L2 cache. 

(Refer Slide Time: 14:24)

So that means L1 is inclusive of L2. And in this case, whenever, if I evict a block from L2

cache, may be because of a cache replacement policy applied at L2 cache, so to keep the

inclusive property correct. So, we have to invalidate the corresponding block from the L1



cache that is shown in the figure by using back invalidation. So, we have to invalidate a block

in L1, if the same block is evicted from the L2 cache. Whenever there is a miss happens for a

processor memory request in the L1 cache so we go to L2 and if even L2 also incurs a miss

for the same memory request, then we will go to the memory. And when we get the data from

memory we keep the block in L2 and supply the block to L1 and finally, supply the data to

the processor.

So, that is what is shown in the figure using a miss flow. So, when we are filling the data

from memory we first  fill  in L2 and then fill in L1 and supply the required word to the

processor. This is simple to implement, but the disadvantage with the inclusive cache is your

overall capacity is equal to the capacity of L2 cache only because the L1 is inclusive of L2.

To increase the cache capacity we can go for other extreme which is called as exclusive cache

where the data stored in L1 is completely exclusive to the data in L2, effectively L1, L2 are

mutually exclusive.

So, when there is a miss in the cache in the L1 cache, we will go to the L2 and if there is a

miss in L2 also we get the data from the memory, but when we are filling the data from

memory we directly go to L1 and keep the block in the L1 cache alone. And whenever we

evict a block from L1 we keep the block in the L2. The reason is when we evict a block from

L1 we do not know whether processor may require the data in future or not. So, for the safe

side we will keep all the evicted blocks from the L1 into L2. So, that if processor requests the

data from evicted block in future L2 may supply the data. So, that way we can reduce the

overall miss penalty.

So, this improves the overall cache capacity, but the problem with this exclusive cache is

whenever we want to implement cache coherency. So, do not worry about the definition of

cache coherency we are going to discuss the cache coherency when we come to the multicore

architecture in the last unit of this course. When we want to invalidate a cache block we have

to search in both L1 and L2 caches if you are considering the cache hierarchy in an exclusive

fashion. But whereas, in the case of inclusive caches because we know that all the L1 data is

there in L2, all we have to do is just search in L2 cache and invalidate to locate a block we

have to search both in L1 and L2 as L1, L2 are mutually exclusive in the case of exclusive

caches.



So, as a result, from the implementation point of view the exclusive caches are costly, but

from the capacity point of view the exclusive caches are efficient. In other words the capacity

of the exclusive caches is equal to the sum of the capacity of L1 cache and L2 cache, but the

current  day  processors  are  actually  implementing  an  intermediate  to  these  two  extremes

which is called as non-inclusive caches. So, this non-inclusive cache says that data of L1 may

or may not present in L2.

So, whenever processor incurs miss in the L1 cache, we go to the L2 cache, if L2 is also

missing then we go to the memory but when we are bringing the data from memory we keep

the block both in L2 and L1, but now when L2 cache evicts a particular block we do not have

to back invalidate the corresponding block in L1 we can just invalidate in L2 itself. So, as a

result it violates inclusive property. But the advantage with these non-inclusive caches is it

can increase the capacity overall capacity of the cache hierarchy as compared to the inclusive

caches, but the drawback with this is still when we want to implement the cache coherency to

invalidate a particular block we have to search both L2 and L1. Or otherwise we have to

come up with mechanisms such as like extra bit is allocated for each of the block in the L2.

And this extra bit may say whether the block is present in the L1 or L2. We can do couple of

the optimizations to reduce the penalty associated with searching in both levels of caches

especially  in  the case of  cache coherency implementations.  So,  now we will  look at  the

techniques to minimize the miss penalty. So, we know that the processor can generate a read

request or a write request. And generally the reads are performance critical because processor

will wait for the data to be available to continue further, but whereas, in the case of a write

operation processor can write and it can continue with subsequent operations. So, as a result

we need to give priority for reads over writes.



(Refer Slide Time: 20:43)

But  in  the  normal  design  of  a  system with  multiple  levels  of  cache  hierarchy,  when  a

processor generates a write request and the write will be written to the L1 cache. And when

we are evicting a block from the L1 cache, for example and the block is dirty. Now, what is

going to happen is we have to write it to L2 to ensure that this write operation is completed.

Especially in the case of write back caches whenever we evict a block from L1, if the block is

dirty, to maintain the consistency we have to write the data to the lower level of caches.

In  this  particular  example,  we have  to  write  this  dirty  block from L1 to  L2.  Unless  we

perform that write operation to L2, we cannot proceed further in the normal cases, this is with

respect to write back caches, if we consider the cache hierarchy is designed in such a way that

write through cache is implemented. Then whenever a processor is writing a word of data to

L1 cache according to the write through mechanism we have to write it to the lower level of

cache hierarchy also. That means whenever we are performing a single write operation we

have to write to L1, L2 and to the memory in this particular example. But writing to L2 is

going to take more time. Similarly, writing to memory is going to take much more time. So,

as a result if you are implementing the write through policy in the normal cases, then every

write is going to take significant amount of time.

And as the write is not performed processor is not going to continue with the subsequent

requests and that is going to degrade the performance significantly. So, what we can do is we

can provide write buffers associated with each of the caches. And whenever we are evicting a



block, a dirty block from L1 we can write the dirty block to the write buffer. Once we write

the dirty block to the write buffer then processor can resume execution of subsequent requests

performing the other operations and so on and also cache is free with performing the other

operations.

Similarly, in the case of write through caches where a processor is writing a word to L1

cache, the same word will be written to the write buffer and the processor will not wait for

writing to the L2 and the memory. Because as long as we write to the write buffer, from the

processor point of view that write operation is said to be completed. So, that processor can

execute  subsequent  request  to  this  write  request.  This  way  we  can  improve  the  overall

performance.  So, effectively write buffers improve performance both in the case of write

through as well as write back caches, but write buffers can create problems especially read

after write hazard.

If processor generates a read request to a block which is recently modified and evicted from

L1 and this modified dirty data is stored in the write buffer between L1 and L2 and there is a

read request to this evicted block. So, this read request will incur a miss in the L1 cache and

if you are not going to look at the write buffer which is associated with the L1 cache and

directly go to the L2 cache, L2 cache may supply the data, but the data is stale. So, this is

called as ‘Read after Write’ hazard. In order to overcome this problem whenever there is a

read request generated by the processor and which incurs a miss in the L1 cache, we have to

search in the write buffer with that particular address.

Check all the contents of the write buffer on a read miss in the L1. Similarly, if there is a read

miss happens at the L2 we have to search the write buffer contents associated with the L2

cache and so on. And if there is no conflict in the write buffer we can supply this read miss

request to the lower level caches. So, that the lower level caches can supply the correct data,

but if there is a match with the write buffer contents then the write buffer supplies the data to

the processor for that particular read request.



(Refer Slide Time: 25:26)

And finally, we look at  a technique to  reduce the hit  time.  So,  when we have a system

supporting virtual memory processor actually generates virtual address for a load or a store.

And this  virtual  address  needs  to  be  converted  into  a  physical  address  and  because  the

physical address is the actual location, the actual address specified in the memory, so we have

to convert virtual address into physical address and to do that efficiently in the hardware we

are going to have Translation Look Aside Buffers TLBs.

We search in the TLB and translate virtual address into physical address and once we have

the physical address we partition this physical address into three segments. One is a block

offset, the second one is set index and the third one is the tag associated with that particular

block especially in the case of set associative caches. And using these three fits we search in

the cache and finally, we supply the data if the cache has that particular data, but doing all

these TLB look up, is actually is going to increase your overall hit time.

Even if the cache is supplying the data we have to translate that before actually accessing the

cache. So, effectively these TLB look up is in the critical path to supply the data from the

cache to the processor. So, how do we reduce this or how do we eliminate this TLB look up.

So, in the normal cases typically cache is  designed as physically indexed and physically

tagged, that is only after address is translated from virtual address to the physical address we

actually search in the cache, first by looking at the set index, index into the cache and then

compare with the physical tag.



So, the caches which are designed using this principle are called as PIPT caches, physically

indexed and physically tagged caches. But because this has a problem of increased hit time,

in order to reduce this we can go for virtual caches, where tag look up and the indexing into

the cache can be done through the virtual address, but if we do completely for the virtual

address, there are some issues such as protection as well as aliasing problems and so on.

So, that is the reason why caches are not completely designed with virtual address search. So,

we can consider an intermediate technique which is called as virtually indexed and physically

tagged. Our indexing into the cache can happen with the virtual address, but tagging, tag

comparison can happen with the physical tag. So, we will just give an example, where how

this virtually indexed and physically tagging happens in a cache, which is designed as VIPT,

virtually  indexed and physically  tagged caches.  Given a  virtual  address  generated by the

processor, we partition that into two fields, one is the page offset and the other one is virtual

page number.

From the page offset we further divide that. So, one component is going to give you block

offset, the second component is going to give you the L1 cache index. Effectively this is the

set index into this L1 cache and virtual page number is divided into TLB index and TLB tag

compare. And our TLB actually contains the virtual tag as well as the physical tag. So, when

we index both into the tag array and the data array of the TLB, we read the TLB tag and this

TLB tag is compared with the tag that we obtain from the virtual address that is a TLB tag

compare address.

And if it is matching then we read the data from the data TLB portion and that actually gives

the physical tag. Remember while we are performing all these operations on TLB we can also

perform operations on the actual L1 cache by indexing into the L1 cache using the L1 cache

index and we read the L1 data. So, once we perform these two operations simultaneously, one

is performing the operations on the TLB cache, the other one is performing the operations on

the L1 cache.

So, we get the physical tag from the TLB data array similarly, the physical tag from the L1

tag array. And these two will be compared and if there is a match that indicates that the data is

available for the virtual address generated by the processor and we supply the data from the

L1 data array to the processor. If there is a miss then we have to go to the next level cache

and before going to the next level cache we have to come up with the physical address. So,



we will get the physical address by combining this L1 tag address that is obtained from the

TLB data portion.

And we combine that with the L1 cache index and the block offset obtained from the page

offset of the virtual  address generated by the processor. And once we have this  physical

address we further partition this into three component, one is L2 tag compare address and L2

cache index and the block offset. And once we have this we will go the next level cache and

perform the operations.  Remember that  this  virtual  indexing can happen only for  the L1

caches. We are not going to perform this for the L2 and L3 caches and so on. And effectively

in  a  multi-level  cache  hierarchy  L2  and  the  further  levels  of  caches  are  designed  using

physical  index  and physical  tag,  but  whereas,  L1  cache  can  be  designed  using  virtually

indexed and physically tagged.

As we eliminated the tag lookup, TLB lookup from the critical path of the cache access so

that we can improve the overall performance. So, with these basic optimization techniques I

am going to conclude this module and in the next module I am going to discuss the advanced

optimization techniques that can be applied on cache memory.

Thank you.


