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Memory Hierarchy Design (Part 1)

So, the last module we discussed instruction set architecture. And now next 2 weeks we are

going to discuss memory hierarchy design mainly consist of cache memory design and the

DRAM based main memory. Why do we require to study memory hierarchy design?

We know that programs exhibit principle of locality, which states that the processor accesses

some data and instructions now, there is a high chance that the same data will be required in

future or the neighboring data may be required in future. So, for example, consider a scenario

where  the  simple  piece  of  code  which  is  matrix  multiplication.  Here  we are  performing

matrix multiplication on 2 matrices B and C and the result is stored in matrix A
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We assume in this particular example the data stored in row major order. So, all the elements

of a row is stored first and then go the next row and so on. So, given this example we know

that B[0][0] is  accessed first  and then B[0][1],  B[0][2] and so on because the k value is

changing based on the innermost for loop and i value is fixed for all the iterations of the two



inner for loops. So which says that if I access element B[0][0] I am going to access B[0][1] in

the next cycle and similarly B[0][2], B[0][3] and so on in the following cycles.

And similarly, when I consider elements of array A, so A[0][0] is repeatedly used for all the

iterations of the innermost for loop. That means for k equal to 0 to n, A[0][0] is used and now

A[1][0] will be used only after the complete iterations of the innermost for loop is done. And

also the complete iterations of the second for loop. So, in the second iteration, so when I

equal to 1, again for j equal to 0 to n and k equal to 0 to n. So, we are going to use A[1][0]

and after that again this will be repeated for A[1][1], A[1][2] and so on. So, this says that an

element of array A when I am accessing now, I am going to access this in the near future. This

is true with the other elements of the other arrays also.

From this example it is clear that the elements which are accessed now there is a high chance

that, the same elements may be repeatedly used in the near future or elements which are

neighboring to the previously accessed elements will be required in the near future. So, this

says that the principle of locality can be exploited either in time or in space. So, accesses to

the same memory location that occur close together in time is called as temporal locality.

Whereas,  if  it  happens  close  in  space  that  is  nothing but  accesses  to  the  same memory

location that occurs close together in space is called a spatial locality.

And the thumb rule says that ninety percentage of the execution of programs spends in only

10% of the code. So, to exploit this principle of locality available in most of the programs, we

need to come up with a memory hierarchy. Rather than storing the entire code and accessing

from the  memory, it  is  always  better  to  keep  the  repeatedly  accessed  data  in  the  faster

memory which is very close to the processor, so that the access time will be very short.

So,  effectively  all  the  cache  memory  designs  or  the  memory  hierarchy  design  what  we

consider  typically  exploits  the principle  of  locality  that  is  available  in  the programs.  So,

organize your memory system into a hierarchy with the faster, but the smaller memory closer

to the processor and large memory which has high access latency will be kept very far from

the processor. Let us look at the memory hierarchy.
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It consists of multiple levels in the hierarchy and this particular example is typically used for

server type of systems. At the top of the pyramid we have the processor registers or CPU

registers, which typically take less space in the order of less than 1kb, kilobytes of space, but

the access time is very fast. It will take typically the orders of picoseconds. The next level of

the memory in the memory hierarchy is the level 1 cache memory which again the size of the

L1 cache is typically around 32kb to 64kb and the access time it  takes 1 nanosecond or

something.

As we move further down in the pyramid, the size of the memory is increasing. The access

time also is increasing, but the cost per bit is reducing significantly. The size of L2 memory is

256kb to 512kb, depending on the system we consider. And the access times are 3 to 10

nanoseconds and some systems can consider third level of cache which is in the orders of 2 to

4 megabytes of space and takes 10 to 20 nanoseconds. Remember the CPU registers, L1, L2,

L3 caches all these are actually designed using SRAM technology, because of that the access

times are very low compared to the main memory which is typically designed using DRAM

based technology.

In the case of main memory, as I mentioned earlier we consider DRAM based technology,

where a single bit is stored in a DRAM cell which consists of a transistor and a capacitor.

And the access times for the main memory is typically in the range of 50 to 100 nanoseconds,

but the size of the DRAM based memory is 4 to 16 GB which is very huge.



In  the  pyramid we have  a  disc  storage,  which  is  having a  size  in  the  range of  4  to  16

terabytes,  but  the access  times  are  in  the range of  milliseconds mainly  because  of  these

mechanical components involved in hard disk. Of course, these days we are also having the

solid state drives which are based on flash technology and provide non-volatility. We know

that the caches and the memory are volatile memories. So, that means when the power is off,

the data will be lost.

We consider flash based memories as a replacement for the hard disc and that is the reason

why the latest laptops and so on we are having the flash based solid state drives, but the size

of flash based solid state drives is not in the range of the size of HDDs, but they are decent

enough to provide good storage space. And the advantage with the solid state drives is their

access times are much smaller compared to the HDDs. So, once you have your memory in the

multi-levels of hierarchy with the faster memory faster and the smaller sized memory closer

to the processor.

So we are going to keep repeatedly accessed data in these faster memories, but, because the

size is very small so, we have to be selective in keeping data in these faster memories. So, as

part of our cache memory designs we are going to discuss different mechanisms of how to

keep selective data. So, is it really required to have so many levels of memory hierarchy in

our computer design? Yes it is required this is mainly because of the famous memory wall

problem.
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This graph shows that the processor performance is significantly increasing over the years,

but the performance of the memory is not increasing at that particular pace. So, as a result as

time  progresses,  we  have  a  significant  gap  between  the  processor  performance  and  the

DRAM performance. In this graph the X axis shows the time line and the Y axis shows the

performance.  And  the  processor  line  is  actually  specifies  the  rate  at  which  the  average

memory requests per second is increasing and the memory line shows the number of DRAM

memory accesses per second.

As we can clearly see that the gap is widening significantly and in order to deal with this

wide gap in the performance between the processors and the memory we definitely need to

have multi  levels of cache hierarchy. And remember this  graph is  only for a single core

processor performance, but these days we are having multi-core systems where two, four,

eight,  sixteen  processors  are  there  in  a  single  chip.  And  all  these  cores  when  they  are

executing different applications require  so much memory band width and to  support that

there is a significant pressure on the memory.

And so as a result we need to definitely have large spaces of the intermediate memories in the

memory hierarchy. So, this says that the aggregate band width requirement grows with the

number of cores. So, as a result we need to have efficient memory system hierarchy design

which takes care of the demands from the multiple cored of a chip multi-processor so that,

the overall performance of the system can be improved. So, having discussed this memory

hierarchy and before going to discuss the internals of the cache memory and DRAM memory

and so on. Let us see what is the performance improvement we get if the cache memory is

provided in the system? To do that, we need to have quantification for cache performance.
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We already discussed the performance equation for CPUs where, 

                           CPU time=CPU clock cycles∗Clock cycle time

So, here this expression is considered with the assumption that our cache memory is perfect.

When I say cache memory is perfect, whatever the memory request issued by the processor it

will be satisfied by the cache memory. So, effectively the processor is not stalled for servicing

any memory request.  This  is  an ideal  scenario,  but  in  reality  this  is  not  the case,  where

processor may be stalled for servicing memory request. So, when you have memory stalls this

equation can be written as,

           CPU time= (CPU clock cycles+Memory stall cycles )∗Clock cycle time

So, CPU clock cycles are the cycles spent by the processor in performing ALU operations or

all the requests which are hit in the cache memory. And the memory stall cycles are the cycles

the processor sitting idle to get the data from either the 1 level of the cache or 2 levels of the

cache or any level in the memory hierarchy. So, memory stall  cycles is  nothing but ‘the

number  of  misses  incurred  by the processor’ times ‘the  total  time incurs  for  servicing  1

memory miss or 1 cache miss’. So, it  is effectively the number of misses times the miss

penalty.

          Memory stall cycles=Instructioncount ∗Number of misses
instruction

∗Miss penalty



Because previously we have given the expression for CPU time in terms of instruction count.

So, effectively we can rewrite our memory stalls also in terms of instruction count.

Memory StallCycles=Total number of Instructions in program∗ Thenumber of misses
instruction

∗ Amiss penalty

This can be further rewritten as,

Memory StallCycles=Instructioncount ∗ Memoryaccesses
instruction

∗ Misses
memory access

∗Miss penalty

So, the ratio of misses per memory accesses, the ratio of misses and memory accesses is

called as a miss rate. So, our total memory stalls can be expressed as,

Memory StallCycles=Instructioncount ∗ Memoryaccesses
Instruction

∗Miss rate∗Miss penalty

So, we can substitute this memory stall equation in our CPU time equation to get the overall

CPU time if we have a cache memory. And using this equation we can get the performance

improvement using a cache memory. So, to illustrate that let us consider an example.
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Assume that the CPI of a computer is 1 when all memory accesses hit in the cache. This is

effectively  an  ideal  scenario  where  you  are  not  waiting  for  any  memory  request  to  be

serviced. So, effectively memory stalls are 0, but if 30% of the instructions are loads and

stores and the miss penalty is hundred cycles and the miss rate is 5%.



How much faster the computer be, if all instructions were cache hits? So, first start with the

ideal scenario, when all the memory accesses are hit in the cache. So, our memory stall cycles

equal to 0. So,

                               CPU time=CPU clock cycles∗Theclock cycle time

which is equal to,

                                      CPU time=IC∗CPI ∗Clock cycle time

where CPI is equal to 1. So, it is effectively IC into clock cycle time. Remember we have not

given any clock frequency for  the  processor  and we have also not  given the number of

instructions in the program. 

So, effectively we consider IC and clock cycle time as it is. Now, consider the scenario where

we have imperfect cache which has some percentage of memory request will incur miss and

there is a miss penalty. So, memory stall cycles due to this, the miss rate is,

           Memory StallCycles=IC∗ Memory access
Instructions

∗Miss rate∗Miss penalty

And so overall CPU time because of this memory stalls is,

CPU TimeMemory stalls= (CPU Time Ideal Scenario+CPU TimeMemory stalls )∗ IC∗Clock cycle time

                             CPU TimeMemory stalls=7.5∗ IC∗Clock cycletime

                                           Speedup=7.5

So, the speedup we achieve because of our perfect cache compared to an imperfect cache is

equal to 7.5. So, this gives a motivation that we need to keep the useful data in the cache

memory so that, the overall performance can be improved. And if you do not have a cache in

this particular scenario for every request we have to go to the memory and which is going to

take hundred cycle latency.

And so as a result the performance penalty will be significant, if we do not consider a cache

memory, but whereas, if we consider a cache memory with some miss rate the performance

can be improved compared to the case where no cache memory is considered. But of we have



a cache memory which is perfect we can improve the performance even with respect to a

cache memory with some percentage of misses and so on.

So, this motivates us to come up with the efficient cache memory between your processor and

the main memory or we may have to have multiple levels of cache memory to improve the

overall performance of the system. So, with this I am concluding this module and in the next

module we are going to discuss the internals of the cache memory design. 

Thank you.


