
Computer Architecture
Prof. Madhu Mutyam

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module – 09
Lecture – 33

Memory Consistency (Part-2)

So, in the last module we discussed sequential consistency model. And in this module we are

going to discuss the total store order and relax consistency models. So, we know that from the

sequential consistency a model that we need to a consider program order, we need to consider

the write completion and write atomicity. And once we put these conditions then the overall

performance will be degraded in the system. And also we may not utilise hardware

performance optimization techniques efficiently. So, for example, consider scenario where we

have the write buffers in our process form the hardware point of view.

(Refer Slide Time: 01:01)

And these write buffers are mainly helpful for performance improvement. The reason is

whenever there is a store instruction then processor can write this store value on to write

buffer and from the processer point of view this store operation said to be completed once we

write that to the write buffer. And so after that we can take the instructions from this store

buffer or write buffer and we can send it to caches and so on. So, but if we consider

sequential consistency model in our system then we cannot use this write buffers. So, this

write buffer concept is going to create a problem with respect to the sequential consistency

model. So, we will see an example here. So, consider a 2 core system where in core 1 we are

going to execute a store instruction followed by a load instruction.

And similarly, in core 2 also we are going to execute a store instruction followed by a load

instruction. Now, for example, if we have write buffers in our multicore system what is going

to often is when core 1 is executing this store instruction x = new then it will a store this

instruction in our store buffer and so whatever the value written on to the store buffer may not

be immediately reflected or communicated to the other cores so as a result when core 2

executing its load instruction r2 = x it will read the old value. Here the assumption is both the

caches associated with the core 1 and core 2 have initial values of this x and y as 0. Now

because the store operation from core 1 is not communicated to core 2.

So, as a result core 2 is going to read value 0. Similarly, store operation of core 2 is not

communicated to core 1 so as a result load operation in core 1 is going to read the old value.

So, when we have write buffers in our multicore system and if we assume that we have an

invalidation based cache coherence protocol. So, let us see if core 1 is performing a write

operation. So, according to cache coherency protocol so it cannot immediately write to a

particular block, it has to send an invalidation signal to all the cores in a multicore system.

And once it gets the acknowledgement from all the other cores stating that they have

invalidated their copies, then this core 1 is going to perform the actual write operation, but

waiting for the acknowledgement to receive will take longer time. So, and it will waste the

processor cycles for core 1. So, as a result one of the optimization what we can do here is we

can consider write buffer so that this core 1 is going to write his value to the store buffer and

it proceeds with the subsequent instructions. And as soon as it gets the acknowledgement for

the invalidation signals from all the other cores in the multicore system then we take this

store instruction from this write buffer and we write it to actual cache.

So, this is the whole the operations we are going to perform when we are dealing with the

store instructions. But now if we consider sequential consistency model in our system

Sequential consistency says that we have to strictly follow the program under between all the

memory operations. So store to load, load to load, load to store, store to load and store to

store. We have to consider strictly this program order as a result when core 1 is performing a

store operation it cannot proceed with any other subsequent instructions until this store is said

to be completed.

And that is going to degrade the overall performance. So, as a result in order to utilise these

write buffers for performance optimisation then we have to relax our sequential consistency

model. So, in this particular example we actually consider 2 cores and each core is

performing a store operation followed by load operation. And assume that the hardware is

supporting the write buffers. And now when each of these cores having the write buffers and

whenever they perform a store operation.

So, this store operation will be written to the write buffer. And it is not actually

communicated to the other cores. So, as a result when core 1 is performing store operation

this x equal to NEW is not communicated to core 2 and core 2 is performing a load operation

it can load the old value. Similarly, when core 2 is performing a store operation so core 1 can

read the old value for that corresponding variable and that is going to violate our sequential

consistency expectations. According to sequential consistency in this particular case we are

supposed to get r1 and r2 as NEW and NEW but here because of this write buffers we may

get values of 0 and 0 where 0 and 0 are initial vales of x and y.

So, that is mainly because so, this store is performed or written to the store buffer and this

store buffer cannot be read from the other core. Similarly, this store is going to perform to a

its corresponding write buffer and the contents of this write buffer cannot be read from this

core. Because of this, so our expected outcome will be different with respect to the sequential

consistency model. But now the question is whether we want to go to the sequential

consistency or whether we want to utilise the hardware performance optimisation techniques

or not.

Generally the processor vendors will go for this hardware based performance optimisation

techniques and they want to consider a relaxed consistency models. So, that programmer can

expect more than whatever the possible outcomes that will be available with respect to

sequential consistency model. So that the programmer will expect extra outcomes in addition

to our sequential consistency model behaviour. Now, in order to utilise write buffers in our

processer, now we have to see what is that we have to relax in our sequential consistency

model requirement. So, that we can come up with a new memory consistency model.

So, here actually once we have write buffers our whole idea is each of these processors can

proceed with the subsequent load operations which are following the previous store

operations because these store operations are written to a store buffer and it is not actually

communicated or written to the actual cache. And before communicating to the actual cache

or before communicating to the other cores we want to proceed with the load instructions. So,

that means here we want to go ahead with subsequent load instructions after any store

instruction. In other words, we want to relax one particular order among the sequential

consistency that is store followed by a load. If we relaxed that then we can expect this 0 0 as

one of the valid out comes for this piece of code

(Refer Slide Time: 08:50)

So, that is what total store order memory consistency model says. So, here the TSO requires

that each core preserves the program of order of it loads and stores for these 3 conditions, but

not for this. If you have all this 4 then this is exactly same as sequence consistency model, but

in total store order because we are going to exploit write buffer concept for performance

improvement so we relaxed this particular condition. In place of this we actually consider

write buffers and we also consider these write buffers are performing in FIFO order, first in

first out order when we writing to the write buffer. So, we still enforce load to load order,

load to store order, store to store order but whenever there is a store followed by a load, then

we can perform subsequent load operation before actually completing the previous store

operation.

So, that is the relaxation we consider and that is a reason why this is also called as a one of

the relaxed consistency model compared to the sequential consistency and the sequential

consistency is a rigid consistency model and that is going to degrade the overall performance.

So, that is the reason why we are considering this total store order and most of the x86 based

processors are actually using this total stored order memory consistency model in their

systems.

(Refer Slide Time: 10:20)

So, consider an example. So, here core 1 is performing a store operation, storing a value

NEW into memory location x and after that it is performing 2 load operations loading the

value stored in memory location x to r1 register and similarly loading value stored in memory

address y into register r2. Similarly, core 2 is going to execute this piece of this core where it

is writing value NEW to a memory location y and after that it is going to read value stored in

memory location y to register r3. After that it is going to read a value which is loaded

memory address x to register r4. We also assume that initial x and y are 0 and also r2, r4 are

0. Now, if we expect let us say r2 r4 are 0 and 0. Then our expectation of r1 and r3 also 0 and

0, but that not be the case because we have our cores equipped with the write buffers and

because of this write buffers. So, our outcomes will be slightly different.

So, here because when we are performing this store operation, this store is returned to the

write buffer and after that there is a load instruction from core 1. And this load is to the same

location where the previous store is performed. So, when we are executing this load

instruction what we do is we actually go to the write buffer and see if there is any matching

request or not. If there is a matching request then we can supply that value to the

corresponding register and then that register will be now loaded with the latest written value

from that particular core, but this value is there in the write buffer and this write buffer cannot

be read from the other core.

So, as a result when this core is actually trying to read the value from the memory location x

it is going to read the old value only and the same logic. So, here when is performing as store

operation this store will be written to a store buffer and store or a write buffer both are used

interchangeably. And when it is performing a load operation to load the value from the same

memory address location then it is going to get the value of NEW from the write buffer

associated with this core.

And this write buffer context cannot be read from this core. So, as a result when the core 1 is

going to perform the second load operation it is going to read value 0 that is old value. So, as

a result with this a piece of code executed on a multicore system where each core is having

write buffer then our outcomes will be r2 and r4 are 0 and 0, but r1 and r3 are NEW and

NEW. Again so, here we assume that each of the cores has write buffer and also we are

considering a total stored order mechanism.

So, when we consider total store order memory consistency model. So, before this store is set

to be completed we can proceed with subsequent instructions and when we perform the first

load is instruction it can get the value from the write buffer that is also a called as a bypassing

logic. So, it is effectively this load is going to get the value from the write buffer and this is

the load bypassing, so we just get the value and the subsequent load which is L2 to which is

going to read its value from the cache. So, that has the stale value. So, as a result we are

getting this. So, note that this write buffer is not going to create any problem when we

consider a single core system because an a single core system whenever we have a load

operation, this load is going to get the latest written value to that particular location.

The reason is whenever we have a previously stored instruction, the store can be written to

the write buffer or store buffer. And after that there is a load instruction this load will first

consult the write buffer if there is a match, then the value will be supplied if not then it will

go to the next level cache and so on. As a result in a single core system write buffer is not

going to create any problem even when you have sequential consistency model, but whereas

in the case of multicore system when we have write buffers write buffers contents can be

available only to the associated core, but not to the cores.

So, that means we cannot access the write buffer of core 1 from core 2 because these write

buffer are not visible to the other cores. If you want to make these write buffers of each core

to be visible to the other cores, then the design will be very complex and we cannot go with

that particular type of design. So, in summary, we can use the hardware optimisation

technique for performance improvement in terms of write buffers. So that processor will not

be stalled for completing the store operation before proceeding with the subsequent

operations.

And also we can relax our store to load ordering so that we can come up with new memory

consistency model and that is called as a total store order memory consistency model. And

once we have a total store order memory consistency model as a programmer we can expect

the other outcomes also and here any subsequent load to store operation, if both are to the

same location, then we can get value from write buffers. So, as a result programmer will add

the corresponding outcomes also as parts of his expected list of outcomes for the piece of

code he is dealing with.

(Refer Slide Time: 16:29)

So, now we will formally define that TSP, total store order memory consistency model. So,

here the TSO says all the cores insert their loads and stores into the global order respecting

there program order. So, each of the cores will insert their load and store instruction in the

program order especially, when we are dealing with the load to load, load to store, store to

store. So, that is what we given. For example, if we have a load operation followed by

another load operation, but these 2 load operations are 2 different locations in the programme

order.

Then in the global order also it will be coming in the same order. So, if load from a location A

is coming before load from location B in the programme order, then in the global order also

load from A will come before load from B. Similarly, if load from A is coming before store

from B in a programme order then in the global order also A load from a will come before a

store from store to a location B. Similarly, if there is a store operation to a memory location A

comes before store to memory location B, in the programme order then in the global order

also store to a location A comes before a store to a location B because in the TSO we are

actually considering the write buffers.

So, we consider FIFO first in first out based write buffers here so that any subsequent load

wants to read then it is going to read the latest written value. And every load gets its value

from the last store before it to the same address. So, that is nothing but the value of load from

a memory location A will be the latest store to that particular location in the global memory

order or previous store to the same location in the program order. So, actually this second

component is talking about bypassing where as this talks about the global order. So, this store

can be from any other core. So, this part is same as sequential consistency model but because

in our TSO we are using write buffer. So, as a result we are adding this component also. That

means our load can get the latest written value either from the other cores or from the same

core. So, that is what is the overall meaning of this particular sentence and if we want to

enforce strict order between store and then load and then we have to use fence instructions.

This fence instruction will be an address less instructions. And once we have this fence all the

instructions before this fence from that particular core needs to be completed in the

programme order. And it cannot proceed with any other instruction subsequent to this fence

until all the instructions before this fence are completed in the programme order. So, that is

what the meaning of this. For example, if there is a store instruction to memory location A

which is coming before this fence instruction in the programme order in the global order also

this store instruction will come in before the fence.

So, that is effectively we are following this store to fence order. And similarly, if there is a

fence instruction coming before a load instruction from a memory location A in the

programme order, then the same thing will be reflected in the global order also. So fence will

come before the load instruction in the global order. So, that is going to say fence to the load

ordering. So, whenever we want to strictly enforce that the previous store needs to be visible

to every other core then we have to consider a fence instruction immediately after that store.

So that when we are going to execute the subsequent load this store is already available to

everyone. And then as a result we can strictly enforce load to store ordering.

In other words if you want to come up with the sequential consistency model on top of TSO

all way have to do is we can insert a fence instruction between a store and load. If store and

load are coming one after another in the programme. And note that when we issue a fence

instruction, it is going to affect only within that particular core where we are actually

executing this fence instruction. For example, this fence is issued in core 1 this fence

instruction is not going to affect the ordering of the instructions one core 2, core 3, core 4 and

whatever the other cores but whereas it is going to the affect the ordering of instructions in

core 1 only.

(Refer Slide Time: 21:40)

So, now when we want to implement the TSO then what we can do is we actually add extra

buffer that is called as write buffer or store buffer so that all stores will come to this store

buffer and processor need not wait for these store instructions to be completed. And it can

proceed with the subsequent load instructions. And if any subsequent load is actually

matching with the previous stores and if the previous store is there in the store buffer then we

can bypass the value and the load can be getting the value from the store buffer so that the

processor can proceed with subsequent instructions.

And whenever the cache coherence system is taking care of the invalidation signals and so on

and then we can start writing these values from the store buffer to the actual cache. And if

you want to strictly enforce this store to load ordering then we have to insert a fence. So, that

when we insert a fence for example, here in core, in the core that executed on the processor

p1 then immediately all the instruction that all there in the store buffer needs to be returned to

the cache. Then only we can proceed further with the remaining instructions following the

fence instruction.

In other words whenever we insert a fence we have to drain our store buffer, when I say

draining the store buffer we have to take each instruction in the FIFO order. And then we

have to write it to our subsequent caches in our cache coherent memory system. So, that is

the reason why. So, when we are using fences we have to be selectively use these fences

instructions. Otherwise this is going to degrade the overall performance. Whenever there is a

necessity then only we can go for fence instructions otherwise we can just not insert any of

this fence instructions in our program. When we have this, the store buffers and if there is a

context switch happen. And at the time of a context switch we have to write the values of the

store buffer to the caches.

So, we cannot use this content for subsequent thread which is executed on any of these cores

and so on. So, effectively so whenever we issue a fence instruction or whenever there is a

context switch thread context switch then we have to ensure that we drain the store buffer. So,

this statement clearly says that during the thread context we have to drain otherwise like the

subsequent thread may read the values from the store buffer and that may be wrong. So, in

another words one thread context should never bypass from the write buffer of the other

thread context. So, now we will see the other relaxed consistency model and before that we

are going to give an example of why we want further relaxation in our memory consistency

model.

(Refer Slide Time: 24:36)

So, consider 2 core system where core 1 is executing 3 store instructions. One is writing

value NEW to memory location data one, another one is writing NEW value to another

memory location data 2 and third one is writing set value to a flag, a memory location or

variable does not matter. And similarly, core 2 is executing 3 load instructions but it also

executes condition instruction or a branch instruction where this branch instruction checks

weather r1 is equal to set or not. If it is not equal to set then it will again go back to this load,

first load instruction and it will be in the infinite loop. And when r1 is equal to set then it is

going to execute L2 and L3. So, here both the data 1, data 2 are initially 0 and flag is not

equal to set.

And now will see in what way we can execute these instructions in our program. If you see

core 1 code especially this 2 instructions are independent S1 and S2, we can execute this S1

and S2 in any order. Of course, we cannot execute this S3 before this S1 and S2 though these

3 store operations are independent, but if we execute S3 before S1 and S2 then what is going

to happen is our r2 or r3 may get the old value that is 0, but according to the programer’s

intuition. So, the idea is, so when we execute this instruction, the last store instruction, his

idea is these 2 instructions are already executed. So, that when we come to this L2 and L3

then these are going to get the NEW value.

So, this is what his intension when he writes this piece of code. So, as a result we have to

execute S3 after this S1 and S2, but there is no need of executing S1 first and then only S2.

We can execute S2 first and after that S1. And finally, we can execute S3 and so on.

Similarly, in this core 2, so here it does not matter whether we execute L3 first or L2 first

among these 2 instructions. Of course, when we come here already the condition is false.

So, as a result we come here, but when we come here we can execute this L2 and L3 in any

order it does not matter. So, programmer’s expectation is either S1 executed first followed by

S3 followed by L1 followed by L2 or he expects S2 should be executed first followed by S3

followed by L1 followed by L3. So, as long as the programme is executed like this he is

going to get expected outcome so everything is fine. But if you are considering sequential

consistency model or total store order model then it clearly says that, if there is a pair of store

instructions, then we have to strictly follow the store to store ordering.

So, it means if you consult TSO or SC then we have to execute S1 first then only we can

execute S2, then we can go for S3 and also sequential consistency and TSO requires that load

to load order also should be maintained. So, it means L2 should be executed first then only

L3 can be executed, but this is actually not necessary according to this piece of code. As long

as if S1 is executed before S3 or S2 is executed before S3. So, he will get the expected

outcome. So, everything will be correct. So, there is no need of strictly enforcing order

between S1 and S2 similarly L2 and L3. So, this is what is expected but when we have SC or

TSO implemented in our systems.

Then automatically we require or we force the instructions to be executed in this order and

that is actually not necessary and that is going to degrade, that may degrade the overall

performance. For example, if this store is, let us say incurred a miss then subsequent store

cannot be executed until the previous store is completed and so on. So, that is actually

degrading the performance. So as a result when we want to go for performance improvement

mechanisms.

Then we need to further relax some of these conditions. So, when we relax these conditions

then we can come up with the NEW memory constancy model. So, that programmer will

reason his program according to this relaxed consistency and accordingly he will expect set

of outcomes. And then also the hardware side we can use optimisation mechanisms to exploit

out of order execution or independent instruction executions so that the overall performance

can be improved.

(Refer Slide Time: 29:54)

So, we can come up with an eXample relaxed consistency model, we can name it as XC. And

here we assume there is a global order exists among all the memory instruction and so on.

And we also use a fence instruction similar to the TSO. And so this fence will not specify

any address and also it will not affect the order of memory instructions or memory operations

in any other core. Other than the core where we are actually applying these fence instructions.

And so whenever we want to enforce the ordering among the instructions we can separate

this pair of instructions with a fence instruction.

So, effectively if you have a load and a store and if you want to execute load first and after

that store then we will insert a fence instructions between this load and store. So, effectively

once we have a fence instruction between any pair of memory instructions all the instructions

before the fence should be completed before we executing any instruction following the fence

instruction. And this relaxed consistency model maintains total store order rules for ordering

2 accesses to same address only.

This is actually says that if you have a load instruction to a same location where there is store

operation performed previously. Then this load has to get the value from the previous store,

but if the load is to a different location as compared to previous store, there is no need of

enforcing store to load order in that. So, that is what we are actually mentioning here. So,

only when there is a necessity then we will order instructions otherwise we are not going to

enforce any order any ordering between any of the memory instructions. So, in other words

XC maintains the TSO rules only for the accesses where these access are to the same memory

location.

So, because of that loads can immediately see updates due to their own stores in the

corresponding store buffer. So, that loads can get the value can store buffers and if the loads

are to the different memory location as compared to the previous store operations we do not

have to keep our load operation to be waiting until the store operation is executed or

whatever.

(Refer Slide Time: 32:22)

So, now consider this example again. So, according to the programmer’s idea. So, he wants

either S1 to be executed before S3 or S2 to be executed before S3, but he does not care about

the ordering among S1 and S2. Similarly, he wants L1 to be executed before L2 and L1 to be

executed before L3, but he does not want the ordering between L2 and L3. So, there is typo

here it should be L3 load 3.

Now, because he does not want ordering among this store 1 and store 2 similarly, load 2 and

load 3 what we can do is we can put a fence instruction here and here. Once we put a fence

instruction here that indicates that. So, we do not care about how the ordering of these

operations in execution but when we want to execute this instruction these 2 should be

completed. In other words any instruction which is coming after fence can be started

executing only when all the instructions which are coming before this fence instruction said

to be completed. Similarly, here whenever we want to execute either L2 or L3. So, it is

compulsorily required that L1 should be completed but after that it does not matter whether

we execute L3 first or L2 first.

So, that is what the meaning of this and now once we put these fence instructions then it is

according to programmer’s expectations and we will get the expected outputs. So, once

fences are there it ensures that S1 S2 will be executed before this fence and after this fence

only S3 will be executed. And also after that we are executing this L1 which is loading the

NEW set value. And after loading NEW set value automatically this condition is false then

we will execute the fence instruction and after that we can execute L2 and L3 in any order.

Because here S1, S2 are separated by comma, this indicates that it does not matter how S1 S2

are executed. Whether S1 is executed first or S2 is executed first but where as if we have this

S2 -> F1 that indicates that S2 should be completed before the fence instruction. And

similarly, F1 and S3 that means this fence instruction should executed before executing this

S3 instruction. So, this is the overall idea of this the fences in XC.

(Refer Slide Time: 35:05)

So, once we have this XC then we can define this relax consistency model formally. So, here

this says - all the cores insert their loads and stores and fences into the global order respecting

these conditions. If there is a load or a store from or to a location A which is coming before a

fence instruction the program order then the same load and store will come before this fence

instruction in the global memory order. Similarly, if fence is coming before a load or a store

from or to memory location in the program order then this fence should be coming before the

corresponding the load and the store instruction in the global order also.

And also if there is a fence instruction which is coming before another fence instruction

program order then this fence instruction should be coming first as compared to the other

fence instruction in the global memory order also. And also all the cores insert their loads and

stores to the same address into the global memory order respecting their program order. For

example, if there is a load instruction coming before a store instruction to the same memory

location then this should be followed in the same global order also.

And similarly, if there is a store instruction to the same memory location and which is coming

before load instruction or a store instruction to the same memory location in the program

order that also again we have respect in the global memory order. Here x and y are

representing load or store instruction. So, here every load gets its value from last store before

into the same memory address. This is the again same as our TSO requirement.

So, here we can get the latest store from any of the other cores or if the same core is actually

written value to the same memory location, then it can, the subsequent load can get the value

from the write buffer associated with that particular cores. So, that is what is mentioned here.

So, this rule is same as the TSO. Effectively this relax consistency model is same as TSO as

long as our memory operations to the same memory location. If these operations are 2

different memory locations then we do not have to enforce strict memory ordering between

this load and store operation. So, we can reorder the instructions and whenever there is a

necessity to enforce an order then we will use a fence instruction for that particular thing.

(Refer Slide Time: 38:00)

So, in order to implement this XC we actually consider reorder buffer associated with each of

the cores. And actually reorder buffer concept we already discus as part of our superscalar

processors. And according to superscalar processor design so we can execute instructions in

out of order fashion by exploiting the instruction independence, instruction level parallelism

and also we can exploit the function unit availability. So that independent instructions can be

executed in an out of order fashion, but finally, when we are committing the instructions we

have to commit the instructions in the program order.

So, that is where we actually make use of this reorder buffer whenever we are issuing an

instruction to a function unit. So, we are actually making an entry in the reorder buffer and

the instruction can execute in any order with respect to the other instruction of the program,

but when we are committing the instructions, we will commit the instructions from the head

of this rob. So, that all the instructions will be committed in the program order. So, that is a

overall idea of this reorder buffer.

And once we have this reorder buffer mechanism in our hardware, so in order to use this we

have to consider a relaxed consistency model, but whereas if we consider sequential

consistency are TSO type of thing then as a result we may not exploit this reorder buffers and

so as a result performance may not be improved significantly. So, in summary we started with

the sequential consistency model, where we cannot use our write buffer or reorder buffer

mechanism and we have to strictly enforce ordering between load-stores, stores-load and

store-store and load-load. So, that will degrade the overall performance. So, as a result we

will relax some of the constraints, that is ordering between store and load.

So that we can come up with TSO - total store order where we can use write buffers available

with our processors. So, that we can improve performance slightly and again in order to

further improve the overall performance by exploiting our out of order execution using the

reorder buffers then we have relax all these memory orderings wherever there is a possibility.

So, that is where we come up with the relax consistency model. Here, in the relax consistency

model if there is a requirement to be following the order then we can insert a fence

instruction

(Refer Slide Time: 40:44)

Otherwise we can execute instructions in out of order fashion by using this reorder buffer. So

with that I am concluding this module and also this concludes this entire course. And in this

multicore architecture module so we have discussed the several things and I will just

summarise here. So, in order to improve the performance. So, we can go for multicore

systems rather than considering single core system so that we can exploit thread level

parallelism in our programs.

And once we have multicore systems then all this multicore applications will go to the main

memory to get the data and so on but because we already discussed a memory wall problem

where the performance of processor is significantly increasing compared to the performance

of the memory. So, in order to bridge this memory wall problem we need to consider

multilevel cache hierarchy system. And again when we are dealing with the shared memory

systems in multicore systems, then what is going to happen is, there may be an issue with

cache coherency, there may be an issue with synchronisation, there may be an issue with the

memory consistency.

So, when we have a shared memory multicore system, we have to deal with the cache

coherency, we have to deal with the synchronisation, we have to deal with memory

consistency and in the last module and this module and the last week and this week we have

considered several techniques associated with the cache coherency maintenance,

synchronisation and memory consistency models.

As part of cache coherency so we discussed the 3 state cache coherency protocol to maintain

the coherency among multiple private caches where they are having the replicated data in

their private caches and so on. And we discussed that for bus based systems as well as for the

directory based cache coherency protocols and in order to support the synchronisation, so our

ISAs instructions set architecture needs to support various hardware primitives.

So that when we write software algorithms to deal with the synchronisation then they can

make use of these hardware primitives. And similarly when we deal with the memory

consistency, so, we know that the memory consistency is different from cache coherency

even the systems may not have the cache coherency but the systems need to have memory

consistency and as part of the memory consistency we discussed sequential consistency, we

discussed total store order consistency and relaxed memory consistency models.

Among all these 3 memory consistency models, so relaxed consistency model will make use

of the hardware components available in the processors to improve the overall performance.

And so that is the summary of these multicore architecture modules for this cache coherency

synchronisation and memory consistency. So, we covered the material from these 2 books.

Thank you.

