
Computer Architecture
Prof. Madhu Mutyam

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module – 09
Lecture – 32

Memory Consistency (Part 1)

So,  when  you  are  dealing  with  the  multicore  systems,  multiple  applications  can  run  on

multiple cores. And these applications can be a multithreaded applications or multi program

applications. When applications are running on multiple cores they share the memory. So,

once we have a shared memory system associated with our multicore systems we need to

provide the correctness  of the shared memory. And the correctness of  shared memory is

provided by using coherence as well as the consistency.

So,  we already discussed  the  cache  coherence  mechanisms and protocol  associated  with

cache coherence maintenance. And now in this module we are going to discuss the memory

consistency. And before formally defining this memory consistency, now we are going to see

a set of examples and that will motivate us to go for memory consistency models.

(Refer Slide Time: 01:06)

So, consider a 2 core system where in core 1 we are executing this piece of code where there

is  a  store  instruction  which  is  storing  value  NEW into  variable  data.  And  another  store

instruction which is going to set the flag bit. And in core 2 we are executing this piece of code

where we are actually loading the value of this flag into a register r1 and then there is a



branch instruction which is actually checking whether r1 is not equal to set or not. And based

on this condition outcome we either go back to this L1 executing this load instruction once

again or otherwise we are going to execute second load instruction that is r2 equal to data. 

So, given this piece of code, now what are the possible outcomes we can expect? So, as a

programmer when we write  this  piece of  code  our  expectations  will  be,  if  the load  2 is

executed that  indicates that  this  branch condition is  false.  So,  the branch condition false

indicates that r1 is equal to set, when r1 is equal to set indicates that the flag is equal to set.

So, as a result when flag is equal to set here then automatically this first store instruction

should have been completed.

So, that means the data should get a value NEW. So, in that scenario now r2 should get value

NEW. Now, we will see what are the possible outcomes we will get? So, if the output is set

and NEW for r1 and r2 then this is according to our expectations or this is according to

programmers expectations, but some scenarios what is going to happen is we can get value

set, 0 where r1 is going to have value set and r 2 is going to have a value 0, but this is actually

against the programmers intuition.

When a programmer writes this  piece of code he assumes that the store one is  going to

execute first then store 2 and once store 2 is executed so flag is equal to set. So, as a result

this branch condition will be false and then it will execute this second load instruction and

this second load instruction is going to get the value NEW, but so we are actually getting set,

0. So, that is nothing but, so this second store instruction is completed before the first store

instruction and because this store is completed. So, the condition is false.

So,  as  result  we  can  execute  this  load  instruction  and  when  we are  executing  this  load

instruction before this store instruction. So, we are going to get the value of 0 in r2 register

because initially data is equal to 0. So, this is against to the programmer’s intuition. Now,

again we will see another example, here again we have 2 cores, core 1 and core 2. And core 1

is executing a store instruction followed by a load instruction here we are storing the value

NEW and in the load instruction we are reading the value from memory location y.

Similarly, core 2 is executing store instruction followed by a load instruction, but here store 2

is actually storing a value NEW into a memory location y and load instruction is going to

read  a  value  from memory location  x to  register  r2.  So,  now what  will  be  the  possible

outcomes from this piece of code.  And initially our x and y values are 0.  So,  now as a



programmer our expectation will be, so it can execute in this order either S1 L1 S2 L2 or S1

S2 L1 L2 or S1 S2 L2 L1 or S2 L2 S1 L1. So, we can have multiple combinations here. So,

but our expected values will be either r1 r2 will have 0 NEW or we can have value NEW 0 or

we can have value NEW NEW. So, this 0 NEW will get in scenario where we execute this r1

is equal to 0. So, that means. So, we have to execute this S1 L1 first before S2 and after that

we can execute L2. So, effectively we can get this outcome when we execute the instructions

in the order S1 followed by L1 followed by S2 followed by L2.

Similarly, if  we execute the instructions in  the order S2 followed by L2 followed by S1

followed by L1 then we are going to get the value NEW,0 because we are executing S2 first.

So, we are storing NEW into memory location y and after that there is a load instruction,

which is actually loading the value from memory location y to the register r1. So, as a result

register  r1 is now having the value NEW. And also in previous sequence because we are

executing load 2 before store 1.

So, as a result we are going to read the old value from memory location x. So, as a result r2 is

going  to  have  the  value  0.  This  is  also  valid  sequence  according  to  the  programmer’s

expectations and now we will see the third outcome which is NEW and NEW. So, this can

happen when we execute  the  instructions  in  this  order  -  S1  S2 and after  that  L1 L2 or

otherwise S2 S1 after that L1 L2 or L2 L1. So, we perform the store operations first and then

we perform the load operations then we can get this value NEW and NEW.

So, as a result when we write this piece of code as a programmer our expectations will be we

either get 0 NEW, NEW 0 or NEW NEW, but this piece of code can also give an unexpected

outcome which is 0 0. So, that is. So, the load instructions may be executed before the store

instructions and if you do so then automatically  you are going to get the r1 equal to 0 and r2

equal to 0.  And after that you are actually writing to the memory locations x and y. So,

because our underlying hardware may execute instructions in a different way than what the

programmer is expected.

As a programmer when we write this code we expect that our first instruction is going to

execute first, then the second instruction and third instruction and so on, but our hardware

and as well as the compiler can rearrange our instructions in the program to maximize the

performance. We already discussed as part of superscalar processor design instructions can be



reordered as long as they are not having any true dependence. So, once we are executing the

instructions in an out of order fashion at the hardware level.

So, the programmer has no clue how the instructions are executed and as a result we will get

some unexpected outcomes than the set  of  expected outcomes.  So, as a  result  the entire

correctness  of  the  system will  be  at  stake.  So,  as  a  result  we  need  to  have  a  memory

consistency models which will give us. As a programmer it will give us some set of rules

saying that you can expect these possible outcomes. And also at the same time it is going to

provide set of rules to the hardware designers or the compilers saying that you cannot go

beyond  this  particular  limit  for  rearranging  the  instructions  or  applying  any  of  the

optimizations.

(Refer Slide Time: 09:25)

In  other  words  so,  memory  consistency  model  typically  gives  specifications  of  a  load

behavior  of  multithread  programs  executed  on  shared  memory.  So,  it  provides  the

information to both the programmers as well as the system designers. For programmers it will

give set  of  indications  so that  the programmer can use these indications  to  reason about

possible results and the correctness of the program when it is executed. Similarly, the system

designer can use these indications to constraints how much accesses can be reordered by the

compiler  or  the  hardware  so  that  we  can  achieve  maximum  performance  improvement

without losing the correctness issues, but any way we have in our systems the coherence

support. When we have cache coherence support do we really require memory consistency on



top of that? Yes indeed we require consistency even when we have the coherence support in

our system.

(Refer Slide Time: 10:35)

So, the goal of cache coherence is to make the caches in multicore systems invisible because

generally when we write a program, for the programmer it does not care whether there are 2

levels of caches, 3 levels of caches, private cache shared cache and so on. So, his idea is there

is a processor and the memory and he writes a programs thinking that the entire code and the

data will be there in the memory. And whenever the program requires then the data will be

supplied to the processor from the memory. And, but once we have this private caches and

shared caches or the multi levels of cache hierarchy to improve the overall performance, then

we will have a cache coherence support.

So, that the cache coherence ensures that the data, the replicated data that is available with

multiple private caches is in consistent state or in coherent state. So, as a result this cache

coherence set up ensures that the caches in the multicore system are invisible, but at the same

time it provides the correctness from the coherence point of view. And also we know that the

cache coherence deals with only one block at a time and it is silent with the interaction of

access of multiple cache blocks.

When there is a store instruction from one processor then if any other processor is going to

read from the same memory location, then the cache coherence ensures that they are going to

get  the  correct  data.  Either  by  using  a  invalidation  based  protocol  or  the  update  based



protocol, but if processor p1 and processor p2 both are performing store and load operations

on different cache blocks or to different memory locations, then cache coherence is not going

to communicate this write to the processor which is going to read because effectively this

write is to a different memory location and read is from a different memory location.

So,  in  other  words  cache  coherence  always  deals  with  whatever  the  operations  we  are

performing for a single memory block not for multiple memory blocks or multiple cache

blocks, but whereas in the case of memory consistency we actually deal with the operation

that are performed on the memory irrespective of whether it is for a single memory block or

for a multiple memory blocks. And also another thing is we can design our multicore system

without caches. We can have multiple cores and then the memory. So, there no cache once

there is no cache there is no need of cache coherence protocols or cache coherence design,

but even then we need the support of memory consistency.

So, this actually says that memory consistency is required irrespective of whether we have a

support  of  cache  coherence  or  not  in  our  systems,  but  because  all  the  current  multicore

systems have multiple levels of caches with the private caches and the shared caches. So, as a

result we have support of cache coherence. So, we can use this cache coherence mechanism

for helping our memory consistency models. So, we can use this cache coherency as a block

box that implements a single write and multiple reader invariants.

When I say single write and multiple reader invariant, so when we have a cache coherence

system in our multicore processor, then when we perform multiple reads we are not going to

change the content of the cache block or the memory block, but whereas, when we want to

perform multiple writes at any point of time only one write will be applicable on a memory

location or cache block. So, as a result all the writes to the same block will be serialized. So,

as a result so the block content will be changed with respect to the latest write.

So, in other words when implement a cache coherence system. So, automatically when we

perform one write. So, we will get the corresponding data updation in our memory block or

the cache block and when we perform simultaneously multiple reads we are not going to

change the state or the contents of the block. So, that is what the cached contents will not be

changed when we perform multiple read operations, but the cache contents will be changed

with respect to a single write at any point of time.



Also when we have multiple writes we want to perform on a cache block in a multicore

system with the cache coherence support, the cache coherence system ensures that the writes

will be serialized. At any time only one write will be happened to that particular cache block

and it will update the contents of cache block. So, in summary we are going to use this cache

coherence as a tool to aid our memory consistency models whatever we are going to design.

So, in this module we are going to discuss sequential consistency model. And in the next

module we are going to discuss total store order model as well as the relaxed consistency

model.

(Refer Slide Time: 15:47)

Lamport has defined the sequential consistency as follows. A multicore system is sequentially

consistent if the result of any execution is same as if the operations of all the processors were

executed in some sequential order and the operations of each individual processor appear in

this sequence in the order specified by its program. So, it says that when we have a multicore

system where multiple applications are executed on each of these cores. And each of this

program is  going to execute instructions in the program order and also because we have

multiple programs executed simultaneously on this multicore system, we can interleave the

instruction execution from all these applications in any order.

So, as long as it produces a value which is consistent with any of the interleaving orders of

these instruction executions then we can say that the entire system is said to be sequentially

consistent.  So,  we now explain  the  sequential  consistency concept  with  an  example.  So,



consider  a  2  core  system where  core  1  is  executing  a  program that  consists  of  a  store

instruction and a load instruction. And core 2 is executing another program which is having

again another store instruction followed by a load instruction.  Now, once we have this 2

programs running simultaneously on these 2 cores. Now, we will see how what will be the

expected  outcome and  whether  the  expected  outcome is  inconsistent  with  the  sequential

consistency definition.

(Refer Slide Time: 17:33)

So, here the core 1 can execute its 2 instructions first that is the store 1 and load 1 and after

that core 2 can execute its instruction that is store 2 and load 2. So, if we consider at this

order. So, store 1 load 1 is coming first and store 2 load 2 is coming next. And here we can

clearly  see  within  a  program the  instructions  are  in  the  program order  because  our  first

program is having store 1 first followed by load 1. Similarly, the second program is having

store 2 first followed by load 2. So, in both the programs we are not violating the program

order.

So, this is according to the sequential consistency definition by Lamport. And also, we are

executing instructions in some interleaved fashion, here in this particular example we are

executing the instructions of program one first followed by instruction from program two. So,

as a result we are getting an outcome 0 and NEW and this is consistent with the Lamport’s

sequential consistency definition. So, as a result we can consider this as valid outcome for

this piece of code.



Now, consider another way of executing these instructions. So, here we are actually executing

the instructions of second program first then we are executing the instructions from the first

program. So, here, so we are executing the store 2 followed by load 2 which is in the program

order as specified by second program, then we are executing store 1 followed by load 1

which is again in the program order as specified by the first program and again this is also,

one  of  the  interleaving  of  the  execution.  And  this  is  again  consistent  with  sequential

consistency definition. So, as a result whatever the outcome we are getting here is also valid.

So, effectively the outcome NEW, 0 is also valid outcome. So, these 2 are according to the

programmer’s expectation.

(Refer Slide Time: 19:33)

Now, consider  other  alternative.  So,  here we are executing store 1 first  and then we are

executing one instruction from the second program that is store 2. And then we will come

back to program one and core 1 and we execute the next instruction, that is load 1. And

finally, we go to core 2 and execute the left over instruction from program that is L2. So, as a

result this is also not violating the program orders in individual programs and this is also

another interleaving of instruction execution. So, the outcome of NEW, NEW is also valid

according to sequential consistency definition.

So, once we have a system supporting sequential consistency, then programmer can expect

either 0 NEW, NEW 0 or NEW NEW as outcomes for this multithreaded program execution,

but so here we may get an outcome of 0 0 also. As long as our hardware is not respecting the



memory  consistency  model  definition  or  the  specifications,  then  it  can  rearrange  its

instructions as a result we can get some outcome which is not consistent with our sequential

consistency definition.

So, see here in this particular piece of code we are executing first, the load 2 instruction and

then we are going to the program one that is executed on core 1 and execute store 1 and then

load 1 this is in the program order. And finally, we are executing store 2 from program 2. We

can clearly see here we are executing load 2 first before the store 2. And which is actually

violating the program order, but according to the sequential consistency definition each of the

individual programs running on our multicore system should respect the program order, but

here because this load 2 and store 2 these are independent and if our underlying hardware is

looking  at  this  independent  instructions  and  then  rearrange  instructions  to  execute  for

performance improvement.

Then it can execute load 2 first before the store 2 and as a result we will get completely

unexpected outcome here.  And as  a result  this  particular  outcome is  non consistent  with

respect to the sequential consistency definition. Now, if we have this memory consistency

model  defined  in  our  multicore  system.  And  once  this  is  defined  then  automatically

underlying hardware also has to respect this memory consistency model and accordingly it

has to look at when it is rearranging the instructions for performance optimizations.

Even when there is set of independent instruction that can be executed in out of order fashion,

if it is going to violate our underlying memory model our memory consistency model, then

the hardware should not go for this rearranging of the instructions because we are not worried

too much about the performance, but we are worried too much about the correctness. As long

as the correctness is maintained then we can go for any rearrangement of instructions to

extract more performance improvement, but if we get significant performance improvement,

but without respecting the correctness then that is of no use. So, as a result we have to give

more  importance  for  the  correctness  then  we  can  think  of  going  for  the  performance

improvement techniques.



(Refer Slide Time: 23:23)

So, after discussing that example, now we will formally define our sequential consistency.

So, an execution that is said to be sequentially consistent requires that all the cores insert their

loads and stores into the global order respecting their program order. Here this less than p

indicates the program order and less than m is indicating the global memory order. So, here

when we have multiple applications running on multiple cores of our multicore system and

each of the core is actually issuing their load and store instructions from the corresponding

application in the program order, then we can construct a global memory order like this.

So, if there is a load instruction from a memory location A and there is a load instruction from

memory location B and these two are from the same application and they are following the

program order, then in the global order also we can just have this order. So, effectively this

particular statement says that, if a load from a memory location A is coming before load from

a memory location B from a particular program then in the global order also this load A will

come first before load B.

So, this is actually saying that we have to maintain the load to load order. So, that is what it

says because this is from a single application, where there actually sending a load instruction

for a memory location A and then we are issuing a load instruction from memory location B.

And if they are in the program order then in the global order also they will come in the same

order.



So, first load A will come and then load B will come. So, now consider another scenario. So,

we have a load instruction from a memory location A followed by a store instruction from, to

a memory location B in the program order. Now, in the global order also global memory

order also this load has to come before this store. So, that is what is given here. So, this is

called as load to store ordering. So, if there is a leading load followed by a trialing store in the

program order, then in the global order also the load should come first then the store.

Now the third condition says, that if there is a store to a memory location A, followed by a

store to a memory location B in the program order. Then in the global order also this store to

location A comes first before store to a location B, that is what the store to store ordering.

And finally so, if there is store to a memory location A coming first in the program order

before load to a memory location B, then in a global order also this store should come before

this load. So, that is what the store to load ordering. Effectively when we have sequential

consistent model defined in our multicore system, then we have to respect the order between

every pair of load and store instructions.

Load to load order should be maintained, load to store order should be maintained, store to

store order should be maintained and finally, store to load order should be maintained. And

also every load gets its value from the latest store before it to the same address. So, what is

this? For example, in our program we have a store instruction to a memory location A and

then there is a load instruction from the memory location A, that means this store and load are

from the same application and to the same location. 

So, as a result the subsequent load should get whatever the value produced by the previous

store. So, this will be perfect because our instruction execution from a single program follows

the program order, but what about if the store is from one application and the load is from

some other application. So, how do we do that?  So, effectively let us say program 1 which is

executed on core 1 is  issuing a store instruction to  a memory location A and a program

running on core 2 which is actually trying to read the value from the same memory location

A.

So, now if in the memory order the global memory order if the store is coming first, then this

load from the second core should get the value supplied by this store instruction only. And

also  there  may  be  multiple  writes  to  the  same location,  but  when  we issue  to  this  load

instruction then load instruction should get the latest return value to that particular location.



So, that is what we are giving here.  So, once we execute the instructions in a sequential

consistent manner, then that entire implementation is said to be sequentially consistent.

So, in other words an SC implementation permits only SC executions. When we say our

system  is  supporting  sequential  consistency  then  all  the  instructions  whatever  they  are

executed on our system should be supporting sequential consistent execution only. And this

sequential consistent execution will respect this load to load, load to store, store to store, store

to load ordering. As well as the load is always going to get the latest write to that particular

memory location  from where  this  load  is  going to  read.  So,  how do we implement  this

sequential consistency in our system?

(Refer Slide Time: 29:51)

A naive method is, so consider a unicore processor where this unicore processor is actually

supporting this multitasking. So, that means, so this unicore processor can execute one task

now and then there may be a context switch and then it will go to another task and execute

and then again go to third task and execute for some time and then there is a context switch

and comeback to the first task and execute.

Effectively so, we have a single core and multiple tasks. And at any point of time this core

will execute instructions from only one of the task. And when we are executing instruction

from one particular task we know that we are executing the instructions in the program order

in that particular task. So, effectively this is like a switch model. Also we can extend this for a



multicore  system  or  a  multi  processor  system,  where  we  have  multiple  processors  and

multiple cores. And all these cores are connected to the memory.

Now when an application running on any of these cores, when it is issuing the request, then if

these requests are load or store request then they have to go to the memory. And now this

memory is going to be accepting the request at any point of time only from one particular

core. And once it processes that particular instruction then it can move on to another core and

then accept any load and store instruction from the corresponding application running on that

particular core and so on.

So, in other words this is acting like a memory switch. And there may be requests from all

these cores and at any point of time this switch is going to take or accept the request from one

particular core at any point of time. And after processing that then it will move on to the next

one randomly and then again it will take the request from that particular corrected core and

then process and then again switch to some other core and process the request and so on. So,

this  way we can  simply  implement  our  sequential  consistency  in  our  multicore  memory

system.

(Refer Slide Time: 31:59)

But  most  of  our  current  systems  are  almost  all  the  current  multicore  systems  or

multiprocessor systems are actually have the cache coherent memory system, where we will

have set of private caches for each of the cores. And then there is a shared cache or the



memory and we will have cache coherence support so that the entire memory hierarchy will

maintain the cache coherence.

And once we have this we can treat this as a black box. And all these cores are connected to

this black box and at any point of time when this multiple cores are sending their request only

one request from a particular core can be accepted. And it will be processed by this cache

coherent memory system and the response will be supplied. And after that again this system

is going to accept a request from some other core and so on. So, for example, consider a bus

based simple multicore system where we have 4 cores connected to a common bus and each

of these cores when they want to get some data from the main memory or the shared cache,

then they place their request on the bus, but note that multiple cores cannot place their request

simultaneously on the common bus. 

So, for that they have to go for bus arbitration logic and they will request for the bus and bus

will be given for only one of the requesting cores. And whoever wins the arbitration they are

going to place their transaction on the bus. So, that the memory of the shared cache is going

to supply the data for that particular request. And after that the bus will be released and again

all other cores again compete for the bus and whoever wins then they will send their request

on the bus and so on.

So, that way we can implement our sequentially consistency efficiently in this. At the same

time we are having cache support to improve the overall performance,  but this  particular

cache coherent memory system can also be viewed like the set of private caches associated

with each of the cores and then the remaining component of the cache coherent memory

system. It consist of may be a shared cache followed by the main memory and so on.

So, once we have this type of design what is going to happen is as long as applications are

getting hits for their load and store request in their local caches. Then they do not have to deal

with the common bus to send their transactions to the share cache or the memory. So, that

way what we are going to do is, once we have this cache coherent system with the private

caches then rather than restricting only one core sending the request to the cache coherent

system. Now, multiple cores can send their request to their private caches, but if any of these

cores miss in their private caches then again they have to go for bus arbitration logic to get

the  exclusive  permission  to  use  the  bus,  which  is  connected  to  the  shared  cache  or  the

memory.



So that they can send their request on the bus so that they will get the response from the

shared cache or the memory. So, at least, as long as, as long as we have our private caches

which supply the data for the request from these cores,  then we can improve the overall

performance. And this also ensures that the parallel execution from multiple cores and that

will improve the overall performance.

So, effectively once we have a cache coherent system with private caches and the shared

caches, we can implement the sequential consistency efficiently. And at the same time we can

ensure the performance improvement by parallelizing the request processing from multiple

cores by using the private caches associated with the corresponding cores, but the sequential

consistency puts a restriction that we have to respect the ordering between loads and stores.

If there is a load and a store even when these load and stores are 2 different memory locations

we have to respect that order in our global memory order. And as a result the sequential

consistency is going to degrade our performance.

(Refer Slide Time: 36:24)

So, now we will see what are the sufficient conditions for preserving sequential consistency?

So, consider a piece of code, here we consider 3 cores in our system. Where core 1 we are

executing a store instruction that is A=1 and core 2 we are executing a branch instruction that

is a while (A = 0) condition and then there is a store instruction B = 1. Then in core 3 we are

executing this while condition and then we are printing the value of A. So, now when we

write this as a programmer our expectation will be.



So, this print statement should print the value of 1 because it is printing A. And this can be

possible only when we come out of this while loop. We can come out of this while loop only

when B !=0, but B != 0 only when we perform this store operation, but when we perform this

store operation that indicates that we already executed the this while loop and we exited from

this while loop, but we exit from this while loop only when we have A equal to 1. So, that is

what we have given here. So, effectively as a programmer our expectation will be.

So, as long as this instruction is not executed so we will be in this while loop continuously

and whenever we execute this instruction, this store instruction then this condition will be

false. So, that we will go for subsequent instruction to this while and which is another store

instruction that is B=1. And when we perform this then automatically this core will exit this

while loop and it is going to print the value A and A will be 1 because we know that in this

particular  scenario,  if  B=1 happens then  automatically  A=1 should  have  been completed

already.

That is what the programmers expectation, but in our system we may not have, we may not

have  printed  A =  A we  might  have  printed  A =  0.  If  our  system is  not  supporting  the

sequential consistency, when the processor one is going to write to a variable A, it is going to

send an invalidation signal to all the processors because we are assuming that here our system

is  having  the  cache  coherence  support.  When  we  have  a  cache  coherence  support  and

whenever any processor is going to write to a particular location, the first thing it is going to

do is it is going to send an invalidation signal.

Also here we are assuming the invalidation based cache coherence protocol is designed in our

system. Also assume that the local caches in each of these processors have initially some

value A = 0. And now when we perform this store operation we send an invalidation signal,

but unfortunately this invalidation signal is reached only to processor 2, but not to processor 3

or core 3. So, whenever invalidation signal is reached at core 2 this core 2 is now going to

perform this, the load operation because A = 0 is effectively it has to load the value.

And it finds that this variable is or the block which is holding this variable A is invalidated.

So, as a result it will go to the corresponding memory or it goes to the cache associated with

this core 1 and it gets the value A = 1. And once A = 1 is read then automatically this while

condition is false in core 2 and then it immediately executes B = 1. When core 2 is going to

write a value 1 to the variable B it is going to send an invalidation signal. And assume that



this  invalidation  signal  is  immediately  reach core  3,  but  the  previous  invalidation  signal

whatever is sent by core 1 is not yet reached core 3. That may be because the path connecting

between core 1 and core 3 is highly congested and request is stalled somewhere.

So, next time when core 3 is executing this while loop effectively it has to load the value of B

because previously B is invalidated. So, effectively now it goes to cache associated with core

2 to get the latest value of this B. And it is going to get the value as 1 for variable B. So, this

while loop is exited and then immediately it is going to execute it is printf statement because

when it is going to print the value to A because it is local cache of this core 3 still having the

old value.

The reason is whatever the invalidation signals sent by core 1 has not yet reached core 3. So,

as a result it is not invalidated its previous A value. So, when we are going to print the value

A, then it is going to print value as 0 and that is actually inconsistent. And so, as a result

when we want to implement sequential consistency in our model, in addition to respecting the

program order, in addition to respecting the global memory order, we also need to have set of

conditions, that are sufficient conditions to ensure the sequential consistencies.

Every  process  issues  a  memory  operation  in  the  program order.  So,  that  is  we  already

mentioned in the formal definition of sequential consistency. And we have to consider write

completion. So, write completion says that after a store is issued, the issuing process waits for

this store to be complete before issuing any other operation in the program order from that

particular application. So, consider simple example, let us say core 1 is now issuing a store

instruction and after this A equal to 1 there may be another instruction, but this core 1 cannot

execute this subsequent instruction, unless this store is said to be completed.

When I say store is said to be completed, it  has to send an invalidation signal, if we are

considering an invalidation based protocol it has to get the acknowledgement from all the

cores, then only it can write the value to the corresponding variable. Or in another words we

can perform the store operation and then only we can proceed with a subsequent instructions

in the program order. So, first one says all the instructions should be executed in the program

order, but the second one says when there is a store instruction we can not proceed with the

subsequent instruction, unless this store is said to be completed. And the third condition says

that the right atomicity.



So, here after a load is issued by a process, the issuing process waits for this load to complete

as well as it has to wait for the store which is actually supplying the value to this particular

load. So, it has to wait for the store to complete. In other words let us say here we consider.

So, processor p2 issuing a load instruction that is A = 0, when this load is issued then this

process which is running on processor p2, cannot start executing the subsequent instruction

unless this load is completed as well as any store which is actually supplying the value to this

particular store.

So, here we can clearly see this load is  actually loading value from memory location A.

Similarly,  this  process  which  is  running  on  processor  p1  is  actually  performing  a  store

operation to the memory location A. So, now we cannot start executing this B = 1 unless this

load operation is completed as well as this store operation is completed. If we ensure that

then this piece of code is going to print value A = 1 in core 3 because when we are executing

this printf statement.

So, that indicates that we exited from this while loop and when we exited from the while

loop.  So,  we have B = 1,  but  when B = 1 is  performed that  indicates  that  the previous

operation is already completed, but the previous operation consists of a load. And this load is

said to be completed only when any store which is actually supplying the value to this load is

also said to be completed. So, that means this A = 1 is said to be completed. When A = 1 is

completed then this printf  statement is going to print a value 1. So, that is what is write

atomicity.

So, these are the sufficient conditions to ensure the sequential consistency. In summary this

when we want to maintain sequential consistency, we have to go for these set of conditions.

These  are  right  atomicity  which  ensures  that  you  cannot  proceed  with  any  instruction

subsequent to a load instruction unless the load is completed as well as any store which is

supplying the value to this load is also said to be completed. And we also have to maintain

the  write  completion,  where  when  we  issue  a  store  instruction  we  cannot  proceed  with

subsequent instruction unless this store is said to be completed. And also we have to issue the

instructions in the program order and this program order condition will be for each of the

programs.



(Refer Slide Time: 46:02)

Now, we will see whether our 3 state write back invalidation protocol whatever we discussed

as part of cache coherence protocol, will provide the sequential consistency or not. So, for

sequential consistency, we have to ensure that our sufficient conditions are met. The first one

is issuing the instructions in the program order. So, here we assume that all our programs are

issuing the instructions to the program order. So, we do not have to worry about the first

condition, but the second condition is the write completion and the third condition is right

atomicity.

Now, we will see the write completion. So, write completion is detected whenever a write

miss or invalidation transaction is placed on the bus and the write is performed in the cache.

According to our 3 state  the write back invalidation protocol,  whenever we are going to

perform any write operation, if it is going to get a hit in the local cache then it is going to

place an invalidation signal on the bus. For example, see here you may have a block in the

shared state and you are going to perform a write operation.

If the write is a hit then we are going to change the state from shared to exclusive here and we

are going to place a transaction that is invalidation transaction on the bus. So, that any other

caches which have the data in the shared state for this particular block they are going to

invalidate by using this state transition. So, shared to invalid. So, as a result once we place

this  invalidation signal,  everyone in  the  bus  based multicore  system will  invalidate  their



copies.  So,  that  the  requesting  core  which  is  going to  perform this  write  operation  will

actually perform the write operation on the corresponding block.

Similarly, so if you have a block in the exclusive state and if there is a write request because

exclusive  state  indicates  that  only  one  particular  cache  has  that  particular  block  in  the

modified state. So, if there is a write operation then you do not have to place any transaction

on the bus. And because you do not have to communicate this information to all other the

caches because they do not have the data. So, as a result you can peacefully perform your

write operation there without changing the state.

In this particular case you do not have to place any the transaction on the bus. And also

because you have the  data  in  the  modified  state  you can perform multiple  writes  to  the

modified block. So, as a result it is not going to create any problem. So, in this case also you

can say this write is said to be completed. Whenever you have a block in dirty state or a

modified  state  and  you  are  performing  a  write  operation,  you do  not  have  to  explicitly

communicate with all other caches. And you can perform your write and this write is said to

be completed locally, but this is not going to create any incorrectness according the memory

consistency.

Now, consider another scenario. For example, you want to perform a write operation to a

particular  block and you incur  a  miss.  Whenever  there  is  a  write  miss  then  for  this  for

example,  CPU write  miss  then we are going to  place write  miss transaction on the bus.

Whether the block in the shared state or in an exclusive state, for example, here also if there

is a write miss then we are going to place write miss transaction.

So, that means whenever there is a write miss we are going to place a write miss transaction

and all  the cache controllers will  snoop on the bus.  And they respond to this write miss

transaction and invalidate if they have the copy in their local caches. So, after they invalidate

then the requesting core can perform the write operation. Then we can say this write is said to

be  completed.  So,  whether  it  is  a  write  hit  or  a  write  miss.  So,  using  this  write  miss

transaction or invalidation transaction on the bus, we are performing this write completion

successfully.

So, this is satisfying the second sufficient condition for our sequential consistency. Now, we

will see the right atomicity. So, right atomicity says that when we issue a load instruction we

cannot proceed with any subsequent instruction to this load instruction, unless this load is



said to be completed. And also if any other store which is producing the value for this load

that also needs to be completed. So, this right atomicity is actually provided by using this

read completion.

So, when we have a read completion then according to this state transition diagram, this read

completion is met because a read is either causing a bus transaction that follows that of a

write whose value is being returned. For example, there is a write operation from core 1 and

it sends either the write miss transaction or an invalidation transaction on the bus. So, that if

core 2 has that particular block of data it invalidates. And after that let us say core 2 is issuing

a load instruction. Now, core 2 load instruction see that the block is invalid and then it has to

request for that particular block.

Then core 2 is going to place a transaction that is read miss transaction on the bus. So, that is

what is specified here. So, if there is a request read request from core 2, this core 2 can send a

bus transaction and this bus transaction actually follows a write operation or a transaction

corresponding to a write request from core 1. So, that is what is given here because this core

2 is going to get the value supplied by a store instruction produced by our core 1. So that is

what  is.  So,  effectively  when  this  read  operation  is  initiating  a  bus  transaction  this  bus

transaction will follow that of a write instruction which is producing the value that is required

by this load instruction. Or other scenario, this read instruction is actually following another

read instruction by the same processor in the program order. Or consider another scenario

where core 2 is actually requesting the block of data. And this block of data is either available

in it cache or this block is invalidated by a store from core 1. In that case according to this

first condition the load request from core 2 is going to get the data. And after this if core 2 is

generating another load request for the same block.

Now, the second load is actually following the first load in the program order. So, that is what

is mentioned here. So, this read operation can follow a similar read operation from the same

processor in the program order. And the previous read operation can be a hit in the local

cache or a miss in the local cache. In both the cases it is going to get the appropriate data

supplied from a previous store operation or it is supplied from the shared cache. And the third

scenario is  this  read  operation can  follow the program order  on the  same processor  that

performs a write.



For example, consider a different scenario altogether where core 2 is actually generated a

write request first and then there is a read request for the same memory location. So, now

when we come to the load request for the same memory location so this load request is

actually following the previous store request from the same processor in the program order.

So,  that  also  ensures  that  our  read  is  actually  getting  the  correct  data  and  it  said  to  be

completed.

So, effectively we ensure that right atomicity from across the processors or from the same

processor. So, that ensures that our read is said to be completed by using this 3 state cache

coherence protocol. And also we can ensure write completion by using these corresponding

transactions placed on the bus and that also satisfies our 3 conditions whatever we require to

ensure sequential consistency. So, with that I am concluding this sequential consistency the

discussion. And in the next module I am going to discuss the total store order memory model

as well as relaxed consistency model.

Thank you.


