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Synchronization

So, when we are working with multi core systems, we have to deal with three main issues.

One is  cache coherence,  the second one is  synchronization and the third one is  memory

consistency. So, as part of the last week lectures, we covered cache coherence problems and

we  also  discussed  three  state  cache  coherence  protocol  to  deal  with  cache  coherence

problems. And in this  week we are going to  discuss  synchronization as well  as  memory

consistency. And the material whatever I am going to cover for their synchronization and

memory  consistency  is  taken  from  “Parallel  Computer  Architecture”  book  by  Culler

Jaswinder Pal and Anup Gupta. So, why do we have to worry about synchronization?
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So, the synchronization ensures that the consistency among shared data structures. When we

are running multithreaded application on a multi core system and these multi threads may

share some set of data structures and so on. So, we have ensure that at any point of time only

one thread will access the critical section, and so no two processes should enter the critical

section. And for that we have to come up with set of synchronization mechanisms.



Also in our multithreaded program execution, so may be some threads are waiting for some

event to be occurred, and some other thread is going to produce a result for that particular

event and again based on that event. So, the other threads which are waiting for this event to

occur can proceed further. And similarly, there may be a scenario where all the threads have

to  wait  for  some  event  to  occur,  and  then  proceed  further  and  also  again  we  need

synchronization mechanism.

So effectively, so there are different types of synchronizations we have to consider one is a

mutual exclusion, second one is point to point event synchronizations and the third one is the

global event synchronization. And for the mutual exclusion we generally use lock and unlock

pairs, and for point to point event synchronization, we use flags. And finally, for the global

event synchronization we use barriers. So, as part of this course we concentrate on what are

the hardware primitives,  we can support  for  ensuring the synchronization mechanisms in

multi core systems.

So,  we  can  actually  provide  hardware  mechanisms  as  well  as  software  mechanisms  for

providing the synchronization, but there are advantages and disadvantages with each of these

things. So, obliviously with the hardware we can get better performance, but with the lack of

flexibility hardware mechanisms may not be useful in all scenarios, but whereas, in the case

software. So, in the case of software, the performance may not be that much significant, but

will have greater flexibility and adaptability to the scenarios and so on. And also the cost wise

it will be cheaper to implement synchronization mechanisms in software.



(Refer Slide Time: 03:28)

So, we first start with mutual exclusion. So here the mutual exclusion says that when two

processes are competing to enter into a critical section, only one process will be allowed to

enter and the other process will be stopped from entering into the critical section. So, for that

we have to come up with lock and unlock mechanisms, either by using the hardware or by

using the software.

So, in the older systems typically the hardware locks were used in terms of lock lines and so

these  lock  lines  are  separate  from the  address  and  the  data  lines  in  our  processor.  And

whenever any process wants to enter into a critical section, it sets the lock line. Once the lock

line is set if any other process wants to enter into the same critical section, then it will just

wait until this lock line will be reset. So, as a result like we can prevent any other process

entering into the critical section, and the process which is in the critical section, whenever it

wants  to  come out  of the critical  section then it  resets  the lock line.  So that  one of  the

processes, which are waiting to enter into the critical section will set the lock line and then it

will go to the critical section.

So, this is a simple method, but it is not scalable because at any point of time we can have a

limited number of lock lines in our system. So, as a result not more than that many lock lines

can be used and as a result, we cannot implement this method for larger multicore system,

where large number of threads are there and they want to enter into the critical section, then



we cannot apply using this particular mechanism. And also we can consider lock locations in

memory or lock registers in place of lock lines.

In the case of software, we can come up with algorithm which is a routine, which is going to

acquire a lock, and then there is a routine which will unlock this particular thing. So, we can

write a sequence of instructions in our program, and so this set of instructions are going to

acquire a lock and release the lock. And a simple example we can consider here is we can see

here,  there  is  a  load instruction  we are loading some data  from a  memory location to  a

register, and we compare the register with the value 0. That means like weather the value

stored in the location is 0 or not, we are going to check.

If the value is not equal to 0 that indicates that someone has already acquired the lock and

then we have to again go back to this, and then execute this sequence of instructions. And

whenever if the location is storing the value 0, so as a result this condition will be false and as

a  result,  we can  just  go to  this  store instruction and we store value 1 into  that  memory

location. And once we complete this then automatically we say that the lock is acquired, and

the process which acquired the lock and enter into the critical section and it executes the

sequence of instructions that are there in the critical section.

Whenever it completes its execution then it can reset the lock by using this storing value 0 on

to this memory location so by using a store instruction. So that any other process which is

trying to enter the critical section will see that now the lock, the location has the value 0, so

that it can acquire the lock and then proceed. So, this is a simple piece of code written in

software to achieve lock and unlock pair, for mutual exclusion.

So, here the overall idea is, so there will be a lock variable stored in some memory location

and we have to load that value on to a register, and we have to check whether the variable has

value 0 or not. If it is 0 that indicates that no one has acquired the lock, so that the process

which loaded this value on to a register can acquire this lock. And to say that this process has

acquired the lock it has to store a value 1, on to the memory location. So that if any other

process is trying to enter into the critical section or trying to acquire the lock will see that the

location has value 1, and it  cannot proceed further because of this  loop here,  because of

branch not equal to 0 lock is there, so the second process which tries to enter into the critical

section will fail acquiring the locks, so it will be in this loop.



Once the process which has the lock and it wants to release the lock then it stores the value 0

on to the location.  And though this  is  a  simple code actually  there  is  a  problem in this

particular piece of code. The problem is so let us say process p1 is trying to acquire the lock

so process p1, first loads the value from the memory location to the register, then it compares.

And when it compares let us assume that the location has a value 0, so as a result register has

the value 0 and this compare statement is correct. So, as a result this condition will be false,

so it tries to go to this second instruction that is a store location one.

But assume that simultaneously another process p2 also trying to enter into the critical section

and trying to acquire this lock. It also reads the value from this location to a corresponding

register, and it also checks the register whether the value in the register is 0 or not. And it also

finds that the value in the memory location is 0, so as a result the register also has the value 0,

and this condition is false. So, as a result it also goes for this store instruction.

Now process p1 and process p2 both are executing the store instruction, and both are trying to

go for store location 1. So, they are trying to write value 1 into the memory location though

this memory location is unique for both the things, but because process p1 may write first and

process p2 may write second and so on, but does not matter. By the time you come here then

automatically the process is going to acquire the lock because this load, compare and store

these  three  operations  are  independent  operations.  So,  as  a  result  multiple  processes  can

execute this instruction simultaneously, and as a result multiple processes can acquire the

lock.

So, as a result at the end both processes p1 and p2 are going to enter into the critical section,

and that actually defeats the whole purpose of having this particular routine because we want

to ensure that only one process enters the critical section by using this code. But actually this

code is not actually doing that. That is mainly because so we are loading at once, comparing

second  and  then  writing  after  that.  So  because  these  three  operations  are  independent

operations, and these are not formed atomically and as a result we have this problem.

So that means we have to come up with an atomic operation to load the value from the

memory location, to update the value and to compare the value and so on. So, we need a

single instruction that forms all these three operations, so that any process which is actually

executing that atomic operation, atomic instruction will ensure that it will get the lock and no

other process will enter the critical section.
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So, in order to do that we have to actually have atomic read, modify, write instructions in our

ISA. Again as I mentioned earlier we have going to deal with the hardware support to ensure

this synchronization as the result, we have to look at what is the support we can get from the

instructions  and  architecture  to  achieve  this  mutual  exclusion  or  the  synchronization

mechanisms. So, as a result we need to have read-modify-write instructions in our ISA. So

that whatever software routine we write for acquiring the lock and releasing the lock, they

can use this hardware primitives are these atomic instructions supported by ISA and as a

result we can achieve mutual exclusion.

So, we need hardware primitives such as test and set, swap fetch and increment etc type of

instructions in our ISA. Effectively first step is we load the value from memory location to

register, we modify the register content and finally we write this register content back to the

memory  location  because  the  memory  location  is  actually  holding  this  synchronization

variable. So, as a result once we performed this three operations one after another in atomic

way, so there is no other process which is going to interfere with this and then update. And as

a result we can prevent multiple processors entering into the critical section by preventing

multiple processors acquiring same lock.

So, we just consider a test and set instruction and what are the sequences of steps that happen

as a part of this atomic instruction. So, in this test and set we are going to load the value with

test and set it, so first we will, the value in a memory location is read into specified register in



our processor. And the constant one is stored into the memory location automatically. While

we are reading the value from the memory location to a register we are also writing a value 1

to the memory locations. So, these two will happen simultaneously, we said that this test and

set operations is set to be successful only when we load the value 0 into our register.

For example, if the value in the memory location is 1 that indicates that there is some other

process, which has already acquired this lock. So, as a result when we get value one from the

memory location, or test and set operation is not successful for this particular process. So,

whenever any other process acquires the lock then the memory location is going to have a

value one. So that any other process subsequently trying to acquire the same lock, then it

reads value one into its register. And as a result this test and set operation for the subsequent

process is actually unsuccessful.

And this can be applied for by considering any other values rather than just 0 and 1. But

overall, so this test and set instruction is going to load a value from memory location to a

register  simultaneously  it  writes  a  value  to  memory location.  And it  checks  whether  the

register content is 0 or not, if it is not 0 then the test and set instruction is set to be failed. If it

is 0 then test and set instruction is set to be a true, as a result the corresponding process which

executed this test and set instruction acquires the lock. So, we are testing and then setting,

both are happing simultaneously, as a result this is called as an atomic instruction.

Now, we will see how the previous code is modified by using this test and set, and so that we

actually acquire the lock, and we prevent multiple processes entering the critical section. So,

previously  we  have  a  load  instruction,  compare  instruction  and  store  instruction,  three

independent instructions, but now we have only one instruction that is test and set instruction.

And remember this test and set instruction is supported by our underlying ISA.

So,  we execute test  and set,  here  we are reading a  value from location in  a  memory to

register, at the same time we are setting the value in this location. And now we are checking

the register content whether the register content 0 or not, if it is not equal to 0, then we are

actually going back to this and then we are trying to again acquire the lock. And if it is 0 then

lock is acquired. So that this process is going to enter critical section, and it is execute the

instruction section.

Once it comes out of the critical section, then it execute this unlock instructions so that will

be like it is going to store value 0 into this memory location. So that any other process which



is actually waiting for this lock to be acquired, now can succeed with this condition and then

it  can acquire  the lock.  So,  these are  simple instructions  using which we can ensure the

mutual exclusion.

(Refer Slide Time: 17:02)

So similarly, various ISAs have the support for different type of these atomic instructions.

One is swap instruction and the other one is fetch and operation instruction, the third one is

compare and swap. So, in the case of swap we swap the values between the memory location

and register, and this swapping is going to happen simultaneously. Similarly, the fetch and the

operation instruction will have a fetch and increment, fetch and decrement, fetch and add,

different type instructions, where we going to fetch the value from memory locations and

simultaneously we are going to perform an increment, or decrement, or addition. Effectively

this increment or decrement or addition will be like modifying the content. And finally, we

store  this  value  back  to  the  memory  location.  All  these  things  are  going  to  happen

simultaneously or in an atomic sense.

And in the  case of  compare and swap also again here  we require  a  memory location,  a

register to compare with and a register to swap with. We read a value from memory location,

we compare this value with some register content and if the condition is true then we are

going to swap the contents of some other register  with this  memory location so that we

acquire the lock. So again so here typically this instruction requires three operands and RISC

type of instructions are not actually supporting these three operand instructions.



And as a result we cannot use compare and swap in RISC type ISAs. And also again if you

see test and set,  and swap fetch operation or compare and swap all these instructions are

actually performed atomic sense. And also there are so many sequence of steps we have to do

as a part of this atomic instructions and that is actually going to take significant amount of

time, which is also going to increase our CPI clock cycle per instruction.

And whenever, we have to deal with RISC type of ISA’s. The major advantage with RISC

type of architecture is typically all the instructions are simple instructions, and so they are

going to take less amount of time to execute and our pipeline stage time will be simple if you

are dealing with RISC type of architectures, but now if you want to consider any of these

atomic instructions in our RISC type of architecture then that is going to put so much burden.

As a result we have to look for some other alternative type of instructions in RISC type of

ISAs to deal with mutual exclusion.

(Refer Slide Time: 19:42)

So, these are different type systems they are actually supporting different atomic instructions

in their system. For example, IBM370 is considering compare and swap, x86 ISAs typically

consider  any  memory  instructions  as  an  atomic  instruction  with  a  prefix  before  that

instruction, a lock prefix will be considered. So that any instruction with this lock prefix is

said to be considered as an atomic instruction.

Similarly, in SPARC type of machines we can consider swap or compare and swap and but in

the  case  of  MIPS  and  IBM  power  type  of  systems  we  actually  consider  non  atomic



instructions, but we achieve this mutual exclusion. So that will be done by using a pair of

instructions, they are called as load lock and store conditional. Load lock are also called as

load linked, so we execute these instructions load lock and store conditional independently.

And if  second instruction successful  then we can say that the corresponding process has

acquired the lock. So, in other words we actually execute these two instructions separately,

but we achieve the mutual exclusion, that we are going to discuss in the coming foil in detail.

(Refer Slide Time: 21:06)

So, this is actually considered in a mix processors and this is called as load locked or load

linked,  and  store  conditional  is  a  two  instructions  put  together  constitute  this  atomic

execution, and it achieves the locking. So, this load locked is not same as a conventional load

instruction. So, we have going read a value from memory location into a register and at that

same time, we are going to set some flag associated with this memory location that is called

as lock flag. So, once we perform this then we say that the load lock is completed.

And  after  this  we  can  perform  arbitrary  number  instructions  operations  to  modify  thus

register value. And again we are not immediately performing this store conditional, so store

conditional can be performed after some time after performing load lock. So, here once we

perform this arbitrary instruction execution to modify this register value, then will go for this

store conditional. But this store conditional also again is not same as the conventional store

instruction,  the conventional  store instruction is  going to  write  some value  to  a  memory



location. But the store conditional is going to be performed only when some condition is set

to be true. So that is what here it is going to do.

So, store condition is going to write some data of register to the memory location, if and only

if there is no other write to the particular location happened. Since, this particular process has

performed this load lock. So, in this discussion, so we can interchangeably consider process

or processor. Now, here consider a scenario where we have two core system where processor

p1 perform load lock operation. So, it reads a value from memory location to its register and

also it sets the corresponding lock flag register in its local clash. And after that the processor

p1 tries to go for store conditional operation. Mean while let us say if processor p2 also

perform load  lock  operation  on  the  same memory  location,  and it  reads  value  from the

location to its register. And also it sets lock flag register in its local cache.

Now if processor p2 actually performed store conditional before processor p1 is going to

perform the store conditional, then automatically using this log flag mechanism processor p1

knows that there is some other write happened to the same memory location. So, as a result it

has to again go for load lock instruction execution. So that is what it says here. So, store

conditional set to be performed only when, there is no other processor which performs write

operation to the same memory location, after this particular processor which performed its

load lock,  because we are performing this  load lock and store conditional  not  an atomic

sense. So, there may be some other processor which performed operations between this load

lock and store conditional. So that we have to check and if no other processor performed any

write operation to this memory location then we can go ahead with this store conditional and

corresponding processor is going to acquire the lock.

If SC is succeeded that indicates that there is no other intermediate write from any other

processor  to  this  memory  location.  So,  as  a  result  semantically  we  achieve  this  atomic

execution of read modify write. And if it fails then we have to again go back to the load lock,

and then we have to execute. And also again the way it is implemented is that we actually set

the location flag in our local cache, and we always have to do is we have to check this flag.

And if the flag bit is reset that indicates that someone else has already written to the memory

location, and as a result we have to again go ahead with LL operation and we do not have to

generate  any invalidation  signals.  So,  as  a  result  this  is  the  simple  method  and we can

perform this atomic operation using non atomic instructions and we acquire the lock,  if our

store condition is succeeded.
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So, this is a piece of code that achieves locking and unlocking using this load lock and store

conditional.  So,  we can  see  here  we have  ll  instruction  this  is  a  load  lock  or  load  link

instruction and it is going to read value from a memory location to a register r1 and at the

same time it is also going to send the lock flag associated with this particular location in its

local cache. And then it checks whether the location is already having a value 0 or not. If the

value is 0 then it can proceed with modifying the contents of the register if it is not 0, then

that indicates that some other processor already acquired the lock then it has to go back to

this. And again it has to read the value from the memory location.

If it is successful in completing this ll operation and successful in completing this condition

then it  will  go for  this  store conditional.  Whenever  it  goes  for  store conditional  again it

checks  whether  the  flag  bit  is  reset  or  not.  So,  if  there  is  a  change in  the  flag  bit  then

automatically store conditional is not set to be successful, then again we have to go for this

lock. So, that is what we are doing here, so store conditional location r2. Here what we are

doing is we are writing contents of some other register to this location and at the same time

we are checking the lock flag register or lock flag bit. If the bit is equal to 0, that means

someone else reset this the lock flag bit, then we have again go back to this lock and then we

have to start with ll again. If it is not then automatically no one has written to this memory

location, so as a result we can acquire the lock and we enter the critical section.



And whenever  the process completes  executing in the critical  section then it  is  going to

release the lock by writing value 0 to the location. This unlock is same as our previous the

mechanism whatever we discussed earlier but this locking mechanism is different. Rather

than considering a test and set or swap or compare swap type of atomic instructions, now we

are actually performing these operations by using two independent instructions one is load

lock the other one is store conditional. So, we will see with an example how this lock flag

mechanism is implemented.

(Refer Slide Time: 28:48)

So, consider two processor system in our multicore and processor p1 is actually trying to

acquire lock on this memory location. Let us say this is the variable which is stored at a

address xyz. Now, we want to acquire the lock on that particular variable, so we read this

value to our register in processor p1. And we have support of lock flag bit, as well as the lock

address register. So, we store this address into this lock address register and we set this lock

flag bit. Whenever we are performing this ll operation, if ll operation is successful then we

are going to store this address in the lock address register. Also we set this lock flag bit.

Now, we will  see if  there is  any other  processor  which  is  going to  update this  memory

location, if it is so then what is going to happen? Because anyway our multicore system has

the support of cache coherency, now if any processor is trying to write to a location it has

send an invalidation signal on the bus which is connected to this processor. Again we are here

assuming the invalidation based protocol.  So because invalidation based cache coherency



protocol is implemented in this particular system, whenever we are going to write then we are

going to send an invalidation signal for this particular address.

So, all the cache controllers connected to this bus will snoop on the bus and they will check

in there caches, to see if weather they have the corresponding addressed location in them or

not. If there is max then they have invalidate because here the xyz is there and processor p1

actually storing this particular value in this lock address. So, it is going to invalidate and this

will be indicated by this resetting this lock flag bit.

Now, processor p1 again wants to go for this store conditional because previously executed

the ll operation. Now, it is going to go for SC to acquire the lock, when it is goes for SC, SC

operation said to be unsuccessful because the lock flag bit is reset now. So, as a result again it

has to go back to this ll operation, and again it has to perform this ll operation. And then

again it has to go for SC operation if it wants to acquire the lock. So, this is the whole set of

sequence of operations that happen whenever we are performing locking mechanism using

this ll and SC instructions.

(Refer Slide Time: 31:38)

So, whatever I have mentioned previously is represented in this foil here. So, we require lock

flag, as well as a lock address register at each processor for each memory location on which

we are going to acquire a lock. And ll operation sets the lock flag and puts the address of this

memory location into this lock address register, and any incoming invalidations for the same

address will invalidate this lock flag or by reset this lock flag.



If there is no incoming invalidation signal for this particular address, then we can go ahead

with  SC operation,  and so that  this  processor  is  going to  get  the lock  on that  particular

memory location and it can enter the critical section. So, here is not that just a invalidation

signals, which will reset the lock flag, but the lock flag bit can also be reset under other

scenarios, where so if the cache block which actually holds this the lock address value is

evicted from the cache, then also we are going to the reset the lock flag bit. So, that again

processor has to go for the ll operation. Similarly, whenever there is a context which happen

then we have to reset this lock flag. So, this is about the mutual exclusion, now we are going

to see the other one which is event synchronization mechanism. Here event synchronization

can  happen  on  point  to  point  basis  or  on  a  global  sense.  So,  point  to  point  event

synchronization, we are going to use the flag bits, and for the global synchronization we have

to use the barriers. First we will discuss this point to point event synchronization.

(Refer Slide Time: 33:45)

So, here this point to point event synchronization can be implemented by using software

algorithms, which are mainly classified into two groups. One is busy waiting the other one is

blocking. So in the busy waiting typically, so all processors which are actually waiting for

some event to  happen will  just  execute in a loop, infinite loop. And whenever  the event

happens then automatically, the processors which are busy waiting on this event will come

out of the busy wait and then they can proceed further.



Now, here in this busy wait typically what happens is the processor cycles will we wasted

because the corresponding process is actually busy waiting. So, in order to eliminate this

wastage we can actually go for the other type of mechanism that is blocking. So, here a

process, which checks with are event is occurred or not. If the event has not yet occurred then

it will block itself from execution, so that this processor can be given for some other process.

And  whenever  this  event  completes  then  automatically  it  sends  a  signal  so  that  all  the

processes which are blocking they can now come for ready state and they can execute further.

So, here the busy waiting is going to waste processor cycles, but if the busy waiting is not too

much  then  automatically  it  is  not  a  good  idea  to  go  for  blocking  because  blocking  is

effectively a context which happen. So, there are trade-offs positive and negatives for both

the things. And in the case of busy waiting typically, we can consider some variables or flag

variables  or  flag bits  on which the process is  going to  busy wait.  And similarly, for the

blocking we use the semaphore mechanisms and typically  this  semaphores and this  busy

waiting  mechanisms so  on,  will  be  discussed  in  operating  systems  course.  So,  from the

hardware point of view, we can actually consider full and empty bit. So, using this full and

empty bit we can achieve this point to point event synchronization. For example, consider a

producer and consumer scenario where producer is going to write a value to register and a

consumer is going to read the value from that register, or the buffer.

So, consumer cannot read the value from the buffer unless producer is producing value to that

particular buffer. So that means whenever the producer is produces the value to this buffer

then it is going to set the corresponding bit, that is a full empty bit. And the consumer always

looks at this full empty bit, if the bit is set that indicates that the value that is there in the

buffer is the valid value so that the consumer is going to consume it. If the bit is the reset that

indicates that producer has not yet produced the value to this buffer, so that the consumer has

to just wait. So that is what the whole idea.

So, we set when the word is full with the newly produced data on a write, and unset when the

word is empty due to consumer process, which is actually consume this particular data. So,

this  can  be  implemented  at  ((Refer  Time:  37:11))  word  level  granularity  or  it  can  be

implemented at bigger buffer level and so on. So, this can be used for word level producer

consumer synchronisation. Producer writes consumer consumes and this is synchronised by

using this full and empty bit.



So, effectively because of this full and empty bit we can ensure atomicity of a read or a write

with the manipulation of this bit because read cannot happen unless producer is writing the

value to that location and setting the full and empty bit. Similarly, if the consumer is not

consuming the value then it  is  not going to reset this  full  and empty bit.  So,  as a result

producer is not going to produce a new value in to this buffer location. So, as a result we can

ensure the proper synchronisation between the producer and consumer just by using this full

and  empty  bit,  but  again  so  it  is  not  providing  enough flexibility  unlike  these  software

mechanisms.

For example, consider a scenario where a single producer is there and multiple consumers.

Now when producer is producing the value, it is going to set this full and empty bit, but now

we have multiple consumers which want to consume the value from this buffer. Now how do

we  reset?  If  we  are  going  to  reset  after  one  consumer  is  consuming  this  value,  then

immediately producer can produce a new value.  So that the other consumers they cannot

consume the previous value and so and so. As a result it is not providing flexibility if you are

going for the hardware mechanism.

(Refer Slide Time: 39:11)

Now  finally,  we  consider  the  barrier  mechanism  and  this  barriers  also  again  we  can

implement either at the hardware level or the software level. In the case of hardware level, we

can consider a wide and line, which is separate from the address line and the data lines. Let us

say we have 4 core system and we are going to apply barrier, for this 4 core system where



four threads running on this four cores and we have to ensure that all these threads have to

come to a  particular  point  and synchronise  then they  can proceed further  to  execute the

remaining set of instructions.

So, it  means in order to achieve this  we are going to put a barrier, and so even if  three

processors come to the barrier, then they cannot proceed beyond this barrier unless the fourth

one comes. So that means, when we have a barrier instruction in our piece of code so none of

the processors will proceed the barrier unless all the processors come to the barrier. So, this

can be achieved by using this hardware mechanism by considering wired-AND line and here

wired-AND line is initially having a value 0. And the value of this line will become one only

when all the inputs to the wired-AND line will be one.

Now, consider  a  scenario where we have four processes and only one comes to  this  the

barrier signal. So, it is going to set the value one, but because the other three processes have

not come. So as a result their value will be 0. So the resultant value on the wired-AND line

will be 0. So, process which comes to this barrier signal will not proceed further, and it waits

for all the other three has to come. Now, let us say if all four have come then everyone is

going to send a value one on to the wired-AND line because this four have come, so the

outcome on wired-AND line will be one. So, as a result they can proceed further. So this is

simple method, but again it provides no flexibility.

In other words for example, if you have more number of cores then we cannot actually scale

up this design for larger core count. And also another thing is let us say if you are going for

barrier signal for only fewer processor in our system, then also we cannot use this particular

mechanism. So, it is difficult to support arbitrary subset of processors or multiple processes

per processor in our system. And also it is difficult to change dynamically the number of

processors, which are actually involved in the barrier.

For one piece of code,  let us say four processors are involved in the barrier, and for the

second piece of code may be like eight processors are going to involve in the barrier. So, we

cannot adopt to these dynamic change in conditions if you are going for this hardware barrier

mechanisms. So, we have to go for the software barrier mechanisms and that we are going to

discuss now.
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So, in the case of software barriers, we can go for centralized or decentralized barriers but we

are going to discuss on the centralized barrier mechanism here. Though we are actually going

for software barriers, but internally we can take the help of the hardware support in terms of

hardware primitives to acquire the locks. So, this barrier can be implemented using locks,

shared counters and the flags.

So,  in  order  to implement  this  we will  consider  a simple piece of code,  where we have

structure variable for a barrier, which consists of an integer counter, and also it consists of

struct variable lock, and also it has a flag bit. So, having defined this particular barrier struct

variable, now we will see how we can go ahead with the software barrier mechanisms. In this

particular barrier code, what we are doing is first we acquire a lock on that particular barrier

variable. So we acquire a lock and this locking mechanism, we already discussed previously

in  the  mutual  exclusion  mechanism.  So,  we  acquire  the  lock  so  that  there  is  no  other

processor, which is going to enter into this critical section.

Let us say, this is a critical section here we are going to check whether the counter of this

barrier variable is 0 or not. And if it is so then we are going to reset the flag associated with

this  particular  barrier,  because  we have  to  perform this  in  an  atomic  sense  or  a  mutual

exclusion sense. So, we are actually acquiring lock on this particular barrier variable, so that

we prevent all other processors to enter into the critical section to check and update these

values by using this lock.



So, we acquired the lock and we check the condition and if the condition is true. That means

this particular processor is the first processor to come to the barrier, then immediately it is

going to reset the flag bit. And also it reads, it increments this counter, and it reads the value

into its local variable mycount. Now, mycount will be one and after this it is going to release

the lock, so that second processor again tries to enter the  the critical section by performing

these operations.

So, second processor will come and it acquires the lock, and it checks whether the counter is

equal  to  0  or  not.  Now  because  already  processor  p1  incremented  the  counter  so  this

condition will be false, so the second processor is not going to rest the flag bit. But the second

processor is going to increment this counter, and now the counter value is 2 and it is going to

get  the  counter  value  2  into  its  location.  And it  also  releases  the  lock,  so  that  the  third

processor can go to the critical section and increment the counter and so on.

Now after releasing the lock now each of these processors is going to execute the remaining

piece of code. So, they just check whether the mycount is equal to p or not where p is the

total number of processors involved in this particular barrier. So, if the count is equal to p that

indicates that this particular processor is the last processor to reach the barrier. And so as a

result it has to reset the counter and also it has to set the flag bit.

If any of these processors is not the last processors to enter the critical, not the last processor

to reach the barrier, then this condition will be false and then they will go to else, and in the

else part there is an infinite loop. They are just waiting for this flag bit to be 1, if the flag bit

is 0, then there will be in the infinite loop. Whenever the flag bit is 1 then they will come out

of  this  busy wait  loop,  and so that  they  can proceed with all  the  instructions  which  are

subsequent to this barrier instruction, in the code.

So, by looking at this code we feel like this is going to achieve the global synchronization,

but actually there is problem with this particular piece of code. So, the problem is, let us say,

we have four processors in our system and all this four processors are involved with this

barrier. Let us say processor p1 comes to the barrier first, so the counter value is 0, so it is

going to  reset  the  flag  bit  and its  count  is  equal  to  1 and it  releases  the  lock.  And this

condition is false, so it will be in this while loop because the flag is equal to 0. So, it is in the

while loop.



Next processor two comes and it also acquires lock and counter is not equal to 0 now so it is

not going to execute this, but it increments the counter value and now its count equal to 2.

And now it releases the lock and this condition will be false, and it will be again in the while

loop, waiting for this flag bit to be 1. Third processor also comes here, acquires the lock and

then increments the counter and its count value is 3 now releases the lock and this condition

again is false. So it will be in the while loop waiting for flag bit to be 1.

Now, fourth processor came and it also acquires the lock and increments the counter and now

the count is equal to 4, it releases the lock and now the count is equal to 4. So, as a result this

condition is true and now it is going to reset the counter value, and it sets the flag bit. Now,

the flag bit is set so as a result all the processors, which are actually busy waiting for this flag

bit to be 1 will see that this while condition is false, so as a result they can now go ahead with

the instruction subsequent to this barrier instruction.

The  main  problem  is  here  we  are  actually  using  the  same  flag  bit,  where  it  is  all  the

processors are actually looking at this flag bit to be set to 1, and if any of the processors is not

seen the moment when the flag bit is set to 1, then we are going to have a problem. In order

to eliminate this problem we have to go for another mechanism that is called as the sense

reversal mechanism.

(Refer Slide Time: 49:47)

So, because with the previous 1, now one processor is waiting at the previous barrier and all

the other three processors are waiting at the second instance of the same barrier. So that none



of the four processors will proceed further, and as a result we will have a deadlock scenario.

So, in order to eliminate this problem we have to go for a modified version of this mechanism

by using the sense reversal concept.

So,  here  what  we  actually  do  is  we  wait  for  the  flag  to  take  a  different  value  on  the

consecutive times because the previous problem happened mainly because the same set of

processors are actually going to take the same barrier second time. When these processors are

going to go for the same barrier next time, if we change the flag value or in other words if

you change the condition on which they are actually waiting, in the second instance then we

can eliminate the problem. So that we have done here see here for example, we are actually

changing this while condition. Previously, we considered while flag is equal to 0 there is an

infinite loop. But here we are considering while barrier name flag is not equal to the local

sense then there is an infinite loop.

Now, the code is the first processor comes to the barrier and it executes this piece of code

first it changes its local sense. Previously whatever the locals sense value, let us say if it is a

0. Now it is going to consider local sense is equal to 1 by using this negation operation. So it

is now going to get value which is exactly opposite to whatever the value we considered in

the earlier invocation of this barrier.

For example, if the same processor previously entered the barrier with the local sense value

equal to 0. Now it is going to consider local sense value equal to 1, now it acquires the lock,

on the barrier variable, and now it increments the counter value it is similar to the previous

code whatever we have discussed in the previous foil. And whether this processor is the last

processor to reach the barrier or not, and if it so then it is going to release the lock.

After releasing the lock it is going to execute the remaining piece of code, that is like it is

going to reset the counter and also it is going to set the flag as the value whatever it has in its

local sense variable. If this processor is not the last processor to reach the barrier, then it will

go for the else part and here it releases the lock and again because this not the last processor

to reach the barrier, so it will just wait infinitely here for this condition to be false. So, here

the condition is the barrier name flag is not equal to the local sense.

Since, this particular processor updated the barrier name flag is equal to the local sense. So,

as a result now if this value is different, then it will be in the infinite loop. If it is same then it

will exit from that and then it can proceed further to the instructions, which are following the



barrier. Now here consider again the previous problem scenario, where four processors are

there, three processors reach the barrier and when the fourth processor comes to the barrier.

Now, it gets this if condition true, so it releases the lock and then this last processor is going

to set the barrier flag, as its local sense value.

If  any of the three processors which are actually waiting by executing this  while loop is

actually context switch then there will  not be any problem, because when it  comes back

because it is actually waiting for this particular condition and each has a different local sense

value and they are actually waiting on that corresponding local sense. So that is not going to

create a problem, whatever we discussed earlier. So, this is about synchronization mechanism

that  is  implemented  in  multicore  systems or  multiprocessor  systems.  So,  with  that  I  am

concluding  this  module  and  in  the  next  module,  I  am  going  to  discuss  the  memory

consistency issues.

Thank you.


