
Computer Architecture
Prof. Madhu Mutyam

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module – 08
Lecture – 28

Multicore Processors

So, in the last module, we looked at multi threading and in this module we are going to

discuss the need for multicore processors, or also called as chip multi processors.

(Refer Slide Time: 00:24)

So, there is a significant demand from the user side for high computational power.

Applications such as image processing, speech, video and several other applications are

actually requiring high performance computation. So, in order to support these demands, we

need to come up with the efficient processors so that the processors will have necessary

hardware components to process the different application requirements.

So, in order to come up with high performance processors, we have a support from VLSI

process technology, in terms of the number of transistors integrated on a chip. So, if we see

here over a period of time, the number of transistors integrated on a chip is tremendously

increased. Now, currently we are in stage where we can integrate billions of transistors on a

single chip. So, once we have billions of transistors, in a single chip, so we can use these

transistors to provide whatever the functionalities required by the users. So that we can take

care of their demands and provide high performance computation.

So, we need to exploit these available transistors to provide various functionalities, to satisfy

user requirements and also we can improve the overall performance of the processor. In

addition to this, there are certain things which led us to go for multicore processors.

(Refer Slide Time: 02:19)

So, the superscalar processor whatever we discussed earlier are corresponding to a single core

systems, even the multi threading systems, whatever we considered are also part of a single

core systems. So, once we have single core system the amount of performance we get is not

significantly increasing, because of various reasons.

So, one of the main contributors for the overall performance improvement for single core

processors is the frequency scaling. But so this scaling up of frequency cannot go beyond a

certain value mainly because once we have billions of transistors clocking with the high

frequency, then all these transistors are going to consume energy. And that translates to the

heat because once the amount of power increases, and the power per unit area is called as the

power density. And the power density translates to heat, and once the power density increases

the amount of heat generated on the chip will be significantly higher. And as a result we will

have thermal issues.

So, in order to tackle these thermal issues we should not increase the clock frequencies

significantly. So, this is called as frequency wall. So we cannot scale up the frequency beyond

certain value, and we scale up the frequency beyond that value then we are going to have

power and the thermal issues. So, as a result we should not go for the frequency scaling up

significantly. And the second the driving force for us to go for multicore system is ILP wall.

So, here we already discussed in the superscalar processors, so if we go for the wide issue

superscalar processor with a deeper pipeline and with aggressive superscalar techniques, we

can improve the performance. So, when I say aggressive superscalar techniques, the

techniques such as speculative issue of instructions and having support of advanced branch

predictors and so on.

Once we have deeper pipeline with the multi issue, the super scalar processor, we can have a

significant number of in-flight instructions, in our processor at various stages in the pipeline.

And once you have many in-flight instructions we can look at independent instructions

among these in-flight instructions, and then we can schedule these independent instructions

onto functional units. And as a result we can overlap the execution of instructions, which in

turn improve the overall performance. But from this graph if we can see here the x axis,

shows the effort we put in and the y axis, show the performance we get in return.

So, started with scalar in order processor moved to moderate pipeline superscalar processor

with out of order execution, and further moved to very deep pipeline superscalar processor

with out of order execution, as well as aggressive superscalar mechanisms, if we see here, as

we move from scalar in order processor all the way up to very deep pipeline superscalar

processor, the amount of effort we put in will be significantly increased. And also in order to

support this aggressive superscalar mechanisms, out of order executions, and deeper pipelines

so our hardware also is going to take more area under that things.

Once we have these extra components, and what is that we are going to get in return in terms

of the performance? So, the performance improvement is not significant compared to the

amount of effort we put in, so we can go up to this point, but after that we can clearly see the

performance curve is almost flatten. So, this indicates that we are going to get very little gain

in terms of performance with a significant amount of effort, we have to put in to extract the

amount of instruction level parallelism available in applications. So that is called as ILP wall.

So, applications are not having significant instruction level parallelism, as a result whatever

the effort we put in to extract the available ILP, the amount of returns we are going to get is

very small. And as a result we have to look for some other alternative. The third driving force

for us to go for single core to a multicore is the power density. So, as I mentioned earlier

power per unit area is called as power density and once we have more and more transistors

integrated on a single chip, and that too the area of chip is very small.

Once we are clocking all the available transistors in the chip with high clock frequency, these

transistors are going to consume power and as a result the overall power density is going to

increase significantly. And because of that our power density is very high and this power

density translates to heat, and so if you are not going to take care of this then the chip may

burn out or otherwise, like it is going to give undesirable results when we use that for some

computation. So, this is called as the power wall.

Finally, the last one, but this is very important one this is the memory wall. This says that the

performance gap between the processor and the memory is widening over a period of time. In

other words the processor performance is improving year by year significantly, but the

memory technology is not developing significantly as a result the memory performance

improvement rate is not as high as that of the processor performance rate. And because of that

we can clearly see here there is a significant gap between the processor performance and the

memory performance.

So, once we are executing an application on a processor, which is working with high

frequency. And when it wants a data, the memory is the one which is going to supply the

data, so if the memory is not supplying the data as and when required by the processor then

the overall computation will be stalled. And as a result the overall performance of the system

will be degraded. So, in order to tackle this memory wall problem we already discussed in

one of the previous modules, about the multi-level cache hierarchy.

(Refer Slide Time: 09:16)

So, we need to break all these walls, so in order to break these walls that is ILP wall,

frequency wall, memory wall, and the power wall. So, we have to come up with different

designs. So that means we need to think of a paradigm shift, in our processor designs. So,

rather than getting the work done by using a bullock, what we can do is we can get the same

thing done by a collection of the dogs. This shows that rather than considering a complex

superscalar processor with aggressive superscalar techniques, and deeper pipelines to get our

computation done quickly.

We can actually consider a collection of simple cores, but all these cores are working in

parallel, so that our computation can be finished quickly. And also we can reduce our overall

power consumption, and the design complexity can also be minimized. As a result the overall

performance improved at the same time without increasing, the amount of power consumed

for the computation.

So, in other words, if we have a superscalar processor with the deeper pipeline with an

aggressive superscalar mechanisms, let us assume that this processor is going to take one unit

of area, and it is going to consume one unit of power, but it is going to give you one unit of

performance. Now, rather than considering this complex superscalar processor which may be

working with x gigahertz clock frequency, now we scale down the clock frequency of a new

processor and also we consider a simple processor, and assume that this is a simple

superscalar processor, or even a simple in order processor and which is actually working with

much lower clock frequency as compared to this one.

Because this is working with lower clock frequency and also it is not having any aggressive

superscalar mechanisms. So, as a result the performance may not be as that of the

performance, whatever we get with this complex processor. And because we are running this

with lower clock frequency, the power consumption will be significantly reduced as

compared to the power consumption for this complex core. And also because of the

simplicity in design, so this is also actually taking a less amount of area. That may be because

like we do not have to consider our dynamic scheduling mechanisms, we do not have to

consider aggressive the superscalar mechanisms such as advanced branch predictors, deeper

pipelines and so on. So, as a result we may reduce the overall area occupied by this a

processor.

And once we reduce the clock frequency, we know that the power consumption is

proportional to c v square f where f - is the clock frequency, v - is the supply voltage, and c -

is the capacitance. So, once we clock down our frequency we have to reduce our voltage also.

Once we reduce the voltage then because this power consumption is quadratically dependent

on the voltage. So, power consumption will be significantly reduced because of scaling down

of voltage and as a result we consume very little power consumption, as compared to the

power consumed by this bigger one.

So, assume that this power consumption is one fourth of whatever the power we consumed

here. And the performance is may be somewhere around 40% of this particular thing. The

area occupied by this processor, you can assume as one fourth. Now we have this much area

dedicated for our chip, but because of our revised design a simplified design, we are

consuming only one fourth of the area. Now, what we can do is, we replicate this simple core

four times, so as a result now we are actually taking the same amount of area as that of this

complex core.

Since this is consuming one fourth of the total power consumption, whatever consumed by

this complex core, and when we replicated this four times. So we can clearly see here our

power consumption is almost same as this, but the performance is improved as compared to

this. So, this actually gives us a motivation to go for multi core systems, rather than

considering a single core system.

Here we have collection of simple cores and all these cores are working simultaneously to

compute our required task. And if the task is highly parallelizable, then we can divide our

task into four subtasks and each of this subtasks can be executed on each of these simple

cores. So, effectively our overall throughput will be improved, in other words overall

performance is going to be improved, when we consider a multi core system. And so as a

result rather than considering a faster or a powerful processor, consider a collection of simple

and the slower cores. And once we have this collection of simple and slower cores, we can

execute our parallelized application. So that the overall performance can be improved, so this

is the overall idea behind going from a single core processor to a multi core processor.

(Refer Slide Time: 15:30)

So, what is a multi core a processor? If we see a single core system, so we have set of

registers called as the register file, we have functional units, we have the inter connection

network connecting different components, like register file is connected to the external

components by using this bus interface, and there is an interconnection here. And also there is

an inter connection between this register file to this ALU or the functional units. And

similarly, there is an I/O input output bridge and which is connected to the main memory, and

also we have not shown here, but we can consider like multiple levels of cache hierarchy

within this.

And also there will be several other components connected to this I/O bus such as disk

controllers, graphics adapters, USB controllers and so on. So, this entire thing corresponds to

a single core system, so here this part is called as a core and rest of the things or the other

components associated with this core to make this into a full fledge system. Now, in a multi

core processor we just replicate this component multiple times, we can see here this is a bus

interface. And currently this bus interface is connected to this single set of register file, and

the functional units and also not shown, but also we have the cache memory and other things.

Now, we replicate each of these things into multiple number, so here we have four core

system, where all this four cores are connected to this bus interface. And this bus interface is

in turn connected to the other components of the system, and these other components are

shared by all the cores of this particular system. So, here this is called as the single core

system and whereas here this a four core system. So, the only difference between single core

and the four core is here we will have four single cores replicated, and rest of the other things

are same.

So, once we have this multi core system, now because each of this core can work

independently and they can share all other resources similar to the they can share all other

resources, with all other the cores. So as a result so once we have this multi core system

where each of this core can work independently, and they can share and each of this. Now, so

once we have this multi core system each of this cores can work independently, and all these

cores share all these resources. And once such system is there, now we can actually execute

independent applications, or multiple threads of a same application on all these cores

simultaneously. So that we can improve the overall through put of the system which in turn

improve the performance of the system.

(Refer Slide Time: 18:45)

So, example multi core processors are one is like core i7 processor from Intel and power -7

processor from IBM here we can see core i7 processor, which has four cores. And each of this

core has all the support for executing instructions in an out of order fashion, and also it has

multi levels of caches L1, L2 caches, private to each of these cores. And there is a shared

cache and this cache is shared by all these four cores. And also in order to handle the graphics

related things, this processor also has a separate component the processor graphics, which

takes care of processing all the graphic applications.

Also this extra components, which are actually having a support for memory controllers and

also connecting to the other components of the system. So, this whole thing corresponds to,

this whole thing corresponds to a core i7 processor from Intel. And similarly, when we

consider IBM the power 7 processor we can clearly see here we have eight cores associated

with this. And the L3 cache is there and each of the core has internally private L1 and L2, and

also support for memory controllers and support for connecting to the other resources in it.

So, in other words these example show that multiple cores can be integrated on a single chip,

and because the cores are now placed on a single chip. So, the communication between core

to core is not going to take significant amount of time, as compared to multi processor

system, where multiple processors are physically apart and these systems are connected

through external communication links, and so on. So as a result this multi core processors are

going to improve the overall performance of the system. So once we have this multi core

processors, now the question is whether we have to consider all the cores similar in type, or

do we have to consider different collection of cores in our multi core system.

(Refer Slide Time: 21:00)

According to Amdahl’s law if alpha is the fraction of the code that can be executed parallely,

then speed up what we can achieve with n number of processors is,

Speedup=

1

(1−α)+
α
n

where n is the number of processors. So, if alpha is, let us say 95%, so that means when you

have 95% of your code can be parallelizable. And even when you consider 64 k, 64 into 1024

that is 65536 processors to execute your computation, you can clearly see here we can get

around 20x speed up in our system.

So that indicates that the amount of speed up we can achieve is limited by the fraction of the

code that can be parallelizable. Even when we have 95% of the code that is parallelizable,

because of this 5% sequential code in the program, we are not gaining significant speed up in

our system, even when we consider 65536 cores. So that shows that it is not always good idea

to consider uniform cores, in our multi core system. We can actually go for heterogeneous

multi core system, when we consider all the cores in our system same, then that is called as

homogeneous multi core system. But when we have some cores different from the other

cores, then we can say this is a heterogeneous multi core system. Example for heterogeneous

multi core system is IBM cell.

So, here we can clearly see we have one complex core or a processor and a collection of

simpler cores, and when there is an application which is highly sequential in nature, then we

can use this a complex processor, or a powerful processor to execute the sequential portion.

Whereas if we have highly parallel application we can execute the parallel portion on this

collection of simple cores. So that we can improve the overall performance.

On the other hand if we see a homogeneous multi core system, this is from Intel, so here we

have four cores and so here all the cores are similar in nature, in terms of the superscalar

techniques, in terms of the amount of cache associated with each of the cores and in terms of

the clock frequency with which each of the cores can work. So, all these are similar so as a

result this is called as a homogeneous core, but again depending on the type of applications,

we have to consider whether we have to go for a homogeneous multi core or heterogeneous

multicore processors.

(Refer Slide Time: 24:29)

So, these are the examples of the current day multicore processors from different vendors

processors from Intel, processors from AMD, processors from Tilera and so on. So, there are

different type of the multi core processors available in the market, and each of these have

different characteristics, and different computational powers, and the different number of

cores inside it. And so in summary, we are in the multi core era where rather than looking at

scaling up the clock frequency, we are now looking at scaling up the number of cores in the

processor.

(Refer Slide Time: 25:19)

We need multi core processors because this multicore processors are going to address our

different wall problems. The ILP wall problem, power wall problem, frequency wall problem

and so on. So, the first thing is to address the frequency and the power limits whatever we

faced with the single core processors in order to improve the performance. So, we can

consider multiple slower cores rather than a single complex core and we can scale the

performance by increasing the number of cores rather than scaling up the frequency.

And depending on the type of applications, we can go for heterogeneous cores and to address

the instruction level parallelism a limits, whatever we faced with the single core processors

because once we have multiple cores in our multi core system, we can execute multiple

threads on each of these individual cores. We can exploit coarse grain parallelism to improve

the overall performance, and finally once we have multiple cores and still we have this the

memory wall problem. In order to address this memory wall problem, we have to go for deep

distributed cache hierarchies, these cache hierarchies are distributed across the multiple cores

in our multicore system, but these caches can be shared.

So, effectively we can consider a shared distributed cache across all the cores, and also we

can consider multi levels of the cache hierarchy. So, rather than one level or two levels, we

can consider three levels, even the there are the current designs targeting at four level cache

hierarchy. So, once we have deeper cache hierarchies, so we can minimize the number of

times going to the memory to get the requested data.

So, we can keep the requested data in our multi levels of cache hierarchy, where typically

first one or two levels can be considered as private caches for each of the cores, and the

remaining levels of the cache hierarchy can be considered as shared across all the cores. And

with that I am concluding this module and in the next module I am going to discuss the issues

that are associated with this multicore processors. And how to take care of those issues, so

that we can use multi core processors without any problem and we can improve the overall

performance of the system.

Thank you.

