
Computer Architecture
Prof. Madhu Mutyam

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module – 08
Lecture – 27

Multithreading

So, far in the computer architecture course we have discussed instruction pipelining and super

scalar processor design. So, in order to improve the overall performance of the system the

processor micro architecture has advanced from in order scalar pipeline design to the out of

order super scalar processor design. And also we have gone deeper pipelines in our processor

design. Once we have deeper pipelines, so, we can have more number of in flight instructions

in different stages. So, as a result we can improve overall throughput of the system.

At the same time in the super scalar processor design we consider parallel pipelines, so, as a

result we can actually issue multiple instructions in every cycle. So, once we consider this

multi  issue  super  scalar  processor  with  deeper  pipeline  so  our  total  number  of  in  flight

instructions  will  be  significantly  higher.  So,  that  by  using  the  out  of  order  execution

mechanisms supported by super scalar processor, we can identify independent instructions

and  execute  these  independent  instructions  on  various  functional  units  available  in  the

system.

So, because of deeper pipelining and multi issue we can improve the performance of the

system significantly compared to an in-order the scalar pipeline. So, again in order to further

increase the processor performance, we can go for even much more deeper pipelining and

also we can go for aggressive super scalar mechanisms. So, when I say aggressive super

scalar  mechanisms,  we  can  actually  consider  speculative  execution,  we  can  consider

advanced branch prediction mechanisms and we can increase the issue width of super scalar

processors  and so on.  But  when we are  going for  deeper  pipelining  concept,  as  well  as

aggressive super scalar mechanisms in our systems, the complexity of the system is going to

increase significantly. And in reality the amount of performance whatever we get because of

aggressive  super  scalar  mechanisms  as  well  as  deeper  pipelines  is  not  as  that  high  as

compared to moderate pipeline super scalar processor design. So, this is called as ILP wall.



(Refer Slide Time: 02:55)

So, the ILP wall says the returns whatever we get is not much higher compared to the amount

of effort we put in. So, in this graph the x axis shows the effort we put and the y axis shows

the performance we get in return. So, we move from scalar in-order processor to a moderate

pipeline super scalar processor, which supports out of order execution and we increase the

number of pipeline stages in our super scalar processor and also we add this aggressive super

scalar techniques such as speculative execution and so on, but we can see here after this stage

the  amount  of  performance  improvement  compared  to  the  previous  design  points  is  not

significantly increasing.

In another words this performance curve is almost flattened here and as a result we may not

get significant benefits if we go for complex super scalar processor design and so on. And

this is mainly because of couple of factors associated with our applications. One thing is the

applications may not have significant instructions level parallelism. So, that is a reason why it

is  called  as  ILP  wall.  Because  if  applications  are  not  having  enough  instruction  level

parallelism, even if you use aggressive super scalar mechanisms we cannot fill all the issue

slots with useful instructions to compute.

So, as a result once we do not have useful instructions to issue on to functional units. So,

functional unit cycles will be wasted, as a result overall performance will not be improved

significantly. so, that we can show here in this particular diagram. Here, this is 4-wide super

scalar processor, which issues 4 instructions at every processors cycle.



So, we have 4 functional units and maximum ILP they can exploit with this 4 wide super

scalar processor is  4.  So,  that means that we can issue 4 instructions every cycle  to  our

functional units. And also we assume that all the functional units are properly pipelined. So,

even  when  we  have  properly  pipelined  functional  units  and  our  system  can  support  4

instructions executing simultaneously every cycle. Even then if you see in this diagram there

are several empty boxes and each of these empty boxes indicates that the functional unit in

that particular cycle is sitting idle.

And  this  is  mainly  because  the  applications  may  not  have  enough  instructional  level

parallelism.  And also  when we are  executing some instructions,  which  may require  long

latency events, For example, if there is a load instruction that misses in the L2 cache or L3

cash, so, in order to service a load request which misses in the L2 cache, we have to go to L3

cache and which may take 10 to 20 cycles. So, as a result unless we supply the data from the

L3  cache  for  this  load  instruction,  we  cannot  execute  any  instruction  which  is  actually

requiring the data supplied by this load instruction.

So, as a result, we are not able to, as a result we may not be able to identify independent

instructions that can be scheduled on this functional units in the appropriate processor cycle

time.  So,  because  of  that,  we  will  get  lot  of  the  cycles  where  functional  units  are  not

efficiently utilized. So, as we have more empty boxes, that indicates the more number of

functional unit cycles are wasted and that in turn results in performance degradation. So, in

summary applications may not have significant instructions level parallelism to utilize by

using our aggressive, very deep super scalar processor.

And also the super scalar processor design cannot tolerate these high latency events, because

once the application is not having enough instruction level parallelism we cannot hide the

latency incurred by these load requests, which miss in the L2 cache or L3 cache and so on.

And also another thing is, this super scalar processor always work with a single thread. At

any  point  of  time  it  can  fetch  the  instructions  from  single  thread  and  these  fetched

instructions will be decoded and these decoded instructions will be dispatch to the functional

units and they will be executed.

So, as a result  if  the single thread is  not having enough instruction level parallelism, we

cannot  get  significant  performance improvement  with  the super  scalar  processor. So,  our

objective is  to improve the performance of the system significantly by using some other



mechanism.  So,  in  other  words  utilize  these  idle  functional  units  which  are  sitting  idle

because of lack of ILP in our programs. And in order to utilize these functional units, what we

have to do is  we allow multiple  threads to share these functional  units,  so that they can

execute their instructions on these idle functional units.

As a result instruction execution will be overlapped across multiple threads and as a result

resource utilization will be improved. And the overall throughput of system can be improved.

So, in order to improve the overall performance of the system by making efficient use of our

functional units, we have to go for the other method that is called as the “Multithreading”.

And this  multithreading is  part  of  thread level  parallelization.  So,  far  we have discussed

instruction level  parallelization as part  of  super  scalar  processor. Now, we move on to  a

different architecture concept that is multi threading, where we actually exploit the thread

level parallelization, but of course, the complete thread level parallelization can be exploited

as a part of multi-core architecture that we are going to discuss in the next module.

(Refer Slide Time: 09:16)

So, in the multithreading systems we deal with threads. A thread is nothing but a control flow

of execution. So, given a program a compiler can divide that program into multiple threads or

programmer  himself  can  write  multi  threaded program.  And once  we have  this  multiple

threads and each of these threads is called as software threads. And program can consists of

hundreds of software threads, but in order to execute these software threads on the underlying

hardware, we need to have the support for this multithreading.



So, as a result we need to have a system that takes care of the execution of these threads on

its resources. So, for that actually we have to consider the thread context. The context of each

thread can be identified based on the program counter as well as the architectural registers.

So, whenever there is a switch between one thread to another thread, we have to save all the

contents  of  architecture  registers  as  well  as  the  program counter.  So,  that  we  can  start

executing the next thread and once the next thread completes it execution, then we can again

comeback to the previously switched out thread, by restoring these values.

The pc content and the architectural registers are back to these registers,  so that  we can

resume the suspended thread execution. So, as a result our hardware needs to have support

for  executing  multiple  threads  simultaneously.  So,  for  that  effectively  we  need  to  have

multiple program counters, we need to have multiple architectural registers, (the files) and

associated rename register logic and so on. So, effectively if a system is supporting multiple

threading concept that means like if the system can execute multiple threads on it then it has

to have support of multiple program counters as well as the multiple architectural register

file.  And once  we have  this  pc  and architectural  register  files  replicated  for  each of  the

threads. 

Then we can efficiently execute multiple threads on the system by switching in and switching

out of the threads. So, in a conventional processor we typically have one program counter and

one set of architectural registers. And this entire thing is called as the thread context. And this

conventional processor is actually dealing with one thread at any point of time. And once we

have a single thread context for this hardware, then at any point of time it can execute only

one thread or instructions from a single thread. 

And if you see the instructions stream, so, it always takes the instructions from single thread

and execute.  Because  we are  dealing with single thread  and single  thread  may not  have

enough instruction level parallelization. So, as a result because of the dependencies among

the instructions we may have the pipeline stalls or bubbles in the pipeline execution. So, as a

result you can clearly see here this white boxes indicate that the functional unit is not utilized

in that particular processor cycle.

So, there are many empty slots mainly because our thread is not having enough instruction

level parallelization and also because we are executing instructions from single thread. So, as

a result we are not able to utilize these underutilized functional units. So, in order to make use



of these underutilized functional units, what we have to do is we have to go for a system that

is supporting multiple threading. So, when we consider a system supporting multithreading,

now we can see here we have single processor, but this processor has now support for 4

hardware threads or thread contexts.

So, each hardware thread has associated pc and the architectural register file. Of course, we

know that the processor is not just collection of the pc and the architectural register file, there

are several other resources associated with CPU or the processor. Now, when we have multi-

threaded processor  all  the  other  resources  of  the  processor  will  be  used  by all  these the

software threads which are executing on these hardware threads.

So,  effectively  the  other  than  this  pc  and  register  architectural  register  file  all  other

component of the processor can be shared by the software threads, which are running on

these hardware threads. We can also call the thread context as hardware thread. So, now in

this particular design, we have a single processor which has support for 4 hardware threads.

So that, when a programmer writes a multi-threaded application with 100 software threads

and  if  he  wants  to  execute  this  100 threaded,  multi-threaded  program on this  particular

processor. So,  he can execute only 4 threads at  any point of time because this system is

supporting only 4 hardware threads.

So, effectively, we have to map 4 software threads onto the 4 hardware threads and at any

point of time it can execute only 4 software threads. Again depending on the type of multi

threaded processor designs we can make only one hardware thread active at any point of time

or we can make all hardware threads active simultaneously. So, that we are going to discuss

in the next foil.

So, now once we have the multi-threaded processor which has multiple thread contexts then

we can clearly see here the instructions stream is actually taking instructions from different

software threads that are executed on different hardware threads. So, for example, in the first

cycle we are taking an instruction from a software thread running on these the hardware

thread or effectively by using this pc which is pointing to the one instruction in the software

thread, that is associated with this.

And we fetched that instruction and execute that instruction. And in the next cycle we can

move on to the second software thread which is mapped onto this hardware thread and by

using  this  pc  we  will  fetch  the  instruction  from  this  software  thread  and  execute  that



instruction. And in the third cycle we can fetch an instruction from a software thread mapped

on  to  this  hardware  thread  and so  on.  So,  as  a  result  we can  minimize  the  wastage  of

functional units by exploiting thread level parallelization. So, it is like one thread is blocked

for long latency or even there is L1 cache miss something which take even if it is taking or 2

to 3 cycles.

So, depended instructions cannot be issued to the functional units. So, as a result we can

mask this  cache  misses  and so on or  the miss  penalties  by scheduling  instructions  from

different threads. So, as a result by exploiting thread level parallelism we can make use of all

the functional units efficiently and we can improve overall performance. Now we can clearly

see here for example, this instruction which is from this software thread mapped on to this

hardware context, if it incurs L1 miss which is going to take 6 to 7 cycles to get the data from

L2.

Meanwhile while this instruction is sending its load request to L2 cache and L2 cache is

going to supply the data meanwhile we can actually schedule instruction from other threads

onto these functional units. So, effectively the latency incurred by this load miss for this

software thread is overlapped with execution of threads from the other hardware context. So,

as a result we can hide the latency because of this cache misses and that is going to utilize all

the functional units efficiently and we can improve overall performances of the system.

So, as a result once we have the multithreading support in our system, we can exploit the

thread level parallelization and we can improve overall performance of the system.



(Refer Slide Time: 18:20)

So, once we have a multi threaded processor, now we can see like what resources will be

shared, what resources need to be replicated and what resources can be partitioned in our

processor. A processor  consists  of  collection  of  resources  and starting  from the  program

counter,  the  architecture  register  file,  register  remaining  logic,  reorder  buffer,  load-store

buffers,  fetch  queue,  decode  queue,  dispatch  queue,  issue  queue,  the  retire  queue  and

similarly, cache memory - L1, L2, L3 caches, renamed registers or physical registers and

functional units.

So,  several  resources  are  available  with  the  processor  and if  the  processor  is  supporting

multithreading. Now, some of these resources can be shared by all the threads associated with

processor, but some resources need to be replicated. Some resources cannot be shared by

multiple threads such as program counter, architectural registers and rename register logic.

Because  we know that  the  control  flow of  a  thread  will  be  uniquely  determined  by the

program counter content as well as the architectural register contents.

So, as a result we cannot share these resources across multiple threads. We have to replicate

these resources if we want to support multiple threads in our processor. For example, if you

consider 4-threaded multithreading processor then, we need to have 4 PCs, 4 architectural

register  files,  we  need  to  have  4  register  rename  logic  units.  And  similarly,  if  you  are

considering 2 way multithreading then we need to replicate these units 2 times.



Whereas in the case of reorder buffer, load-store buffers and several other queues, we can

partition these things across multiple threads. And this partitioning can be done statically or

dynamically. We can equally divide our rob entries for all the threads of our system or we can

divide the load store buffers equally across all the threads and so on. When I say thread, here

it  is  hardware thread associated with our processor. And similarly, we can divide queues

across all the threads of the processor.

And in the case of cache memory, the physical registers, execution units and so on, we can

actually share these units across multiple threads. The reason is because the multiple software

threads running on your hardware threads of a multi threaded processor may be related in

somehow, because all these threads belongs to same process and as a result there may be the

data sharing across multiple threads of a process. So, as a result we need to consider this

cache memory shared across multiple threads.

Similarly, we can consider these physical registers shared across multiple threads. And of

course, the execution units we have to share, because we cannot have separate execution units

for each of the threads. If you have separate execution units then the execution unit utilization

may  not  be  significantly  improved.  For  example,  if  we  consider  one  thread  is  actually

executing  integer  operations  and  the  other  thread  may  be  executing  only  floating  point

operations.

Now what is going to happen is, if we are considering a separate execution units for each of

the threads and we can consider one instance of integer unit, one instance of floating point

unit for each of the threads in our design, where we consider separate execution units across

the multiple threads. If it is so then when I am executing a thread which is executing only

integer  operations  then  the  floating  point  unit  associated  with  that  thread  will  be

underutilized.

Similarly, if I am executing the instructions from the floating point thread then the integer

units may not be utilized. So, as a result if we share all the functional units across all the

threads then the resource utilization will be improved and as a result we can improve the

overall  performance  of  the  system.  And  we  do  not  incur  significant  hardware  overhead

because the functional units are shared across multiple threads. So, after discussing resource

sharing across a multiple threads, now will see like what are the different types of multi-

threaded processor designs we can consider.



(Refer Slide Time: 23:03)

So, our underline processor is consists of 4 hardware threads. For example and we have a

pipeline  design  for  processing  our  instructions.  So,  in  order  to  consider  different  multi-

threaded processor designs, so we have to consider these key characteristics. So, which thread

to be selected for executing next instruction because we have 4 hardware threads and each

hardware thread will have some software thread mapped onto it.

Now, whether we have to fetch the instruction from the software thread mapped onto this

hardware thread or from mapped onto this hardware thread or a software thread mapped onto

this  hardware  thread  or  the  other  one.  So,  how do we select  whether  we  have  to  issue

instructions only from software thread at any point of time continuously and then move onto

the other one, or whether we have to apply a round robin policy across all these threads and

then execute instructions one from one thread per cycle and so on, or otherwise we have to

consider all these hardware threads to be active simultaneously and so on.

So, that means like our thread scheduling policy is going to determine our multi threaded

processor design. If we consider at any point of time only one thread needs to be servicing the

request, then we will come up with one type of multi threaded processor design or if we

consider multiple hardware threads can be active simultaneously, then we can come up with

different type of multi-threaded processor design and so on.

Similarly, once we have the instruction pipelining now whether this instruction pipeline can

be partitioned across this multiple threads or whether we have to consider no partitioning



across multiple threads so, that also going to determine what type of design we have to come

up with. So, once we have these key characteristics to decide on the different type of multi-

threaded processor design, we can consider 3 different multi-threaded designs. One is coarse

grain multithreading CGMT, the second one is fine grain multithreading FGMT and finally,

the last one is simultaneous multithreading SMT. So, we are going to discuss these 3 in detail

in coming foils.

(Refer Slide Time: 25:40)

So, we start  with coarse grain multithreading. As the name suggest coarse grain.  So,  we

always execute instructions from a single thread continuously. And this will continue till a

point where any instruction from this thread is incurring a long latency event, such as L2

cache miss or L3 cache miss. Whenever such thing happens then, because in order to service

this  long  latency  event  we  incur  significant  amount  of  processor  cycles  and  rather  than

wasting the processor cycles for such significant amount of time, what we can do is we can

issue instructions from a different thread.

So, that means whenever there is long latency event occurred on currently running thread

then we switch out that thread and then we resume the execution from a different thread. So,

that means in this coarse grain multithreading our thread scheduling policy is like this. We

switch threads only on long latency events. Why we are considering long latency events only

because this is also determined by our pipeline partitioning method.



In this course grain multithreading we consider our pipeline will  not be partitioned cross

multiple threads. So, that means whenever there is a context switch is going to happen for a

currently running thread then, we have to flush all the instructions related to that particular

thread starting from instruction which incurred this long latency event. And after that we can

resume instructions from the different thread by fetching the instructions from the different

thread. So, as a result there will be a significant amount of pipeline stages wasted in this

process because our execution is happing somewhere in the middle of the pipeline and fetch

happing at the front of the pipeline.

If we consider deeper pipeline design, then the number of pipeline stages between the fetch

and execute will be significantly higher and as a result if we are always switching for a low

latency events in this coarse grain multithreading design, then we are unnecessarily wasting

grocer cycles which leads to significant degradation in the performance. So, as a result we

have to switch between threads only when we encounter long latency events.

So, as a result if this long latency event is incurring a significant amount of time to service

then it is always better to go to a new thread even when we incur some number of pipeline

stages are wasted in the process of flushing out and then fetching new instructions from the

new thread. In other words in coarse grain multi threaded design we always consider context

switch only for long latency events. And this long latency event is going to take significant

amount of time which is much higher than the number of pipeline stalls that incur because of

flushing out the pipeline and fetching new instructions from a different thread.

Because of this thread scheduling policy as well as the flush on a context switch, this course

grain multi threading can tolerate only long latency events. It can tolerate only long latencies

incurred  by  our  instructions  executed  on  the  processor.  And  if  an  instruction  which  is

incurring let us say 2 cycle latency which is going to create a stall in the pipeline by 1 cycle

or 2 cycle, then this design cannot tolerate those latencies because for a low latency events

we are actually not taking the context switch.

So, as a result we will waste those processor cycles in it. So, in order to reap in most benefits,

so we have to consider 2 to 4 thread context in our course grain multithreading design. And

so, in this particular example we are considering a 4 wide processor so as a result at every

cycle  we  can  issue  at  most  4  instructions  onto  4  functional  units.  So,  that  means  are



maximum  ILP  that  we  can  achieve  here  is  4,  but  because  of  dependencies  among  the

instruction software thread.

So,  we may not  issue 4 instructions every cycle  and so on.  So, as  a  result  some of  the

processor cycles there are some functional units which are underutilized and also because we

are actually issuing instructions from a single thread continuously and only when there is a

long latency event then we move on to a different thread and we execute instructions from

second thread and so on.  Here the  color  coding indicates  that  we are  actually  executing

instructions  from 4  different  threads.  So,  continuously  we execute  instructions  from one

thread, then move on to the other thread because of the long latency event incurred by one of

the instructions executed earlier here.

After that we execute instructions from second thread and again there may be long latency

event. So, we can move on to the different thread or otherwise we can start executing from

previously context switched thread and so on. And this type of design is actually considered

in IBM, north star, pulsar processor, but the current processors are actually not using this type

of design. And it is simple to implement and it improves the performance in terms of the

throughput. And it is easy to design.

So, as a result it is not going take a significant cost because here we are considering only

fewer number of thread contexts so as a result our hardware cost is also is not significant.

And because here actually we are taking a context switch on long latency events and we are

stalling on low latency events. So, it is actually designed for in order processing. So, it is not

suitable for out of order processing.



(Refer Slide Time: 32:11)

So, now we move on to the second design, where we will consider fine grain multithreading.

As a name suggests  we actually  switch between threads  at  every cycle  in a  round robin

fashion. If you have let us say 4 threads in our processor, then in the first cycle we issue

instructions from thread 1, the next cycle we will issue instructions from thread 2 then in the

third cycle we will issue instructions from thread 3 and in the last cycle we are going to issue

instructions from thread 4. And in the fifth cycle again we will the go back to thread 1 and

will continue. 

So, effectively we are actually rotating between all these available threads and by doing that

we are actually going to hide the latencies incurred by our instructions. So in this fine grain

multithreading, we switch between threads at  every cycle and because at  every cycle the

thread context  will  be changing,  so,  as  a  result  we have  to  consider  a  dynamic pipeline

partitioning  across  multiple  threads.  So,  effectively  here  one  pipeline  stage  we  may  be

executing an instructions from one thread, in the next pipeline stage we may be executing

instruction from the other thread.

So, effectively in this fine grain multithreading concept, our overall pipelines will be shared

by instructions from the different threads. One pipeline stage may be used by one thread, the

other pipeline stage may be used by instruction from other thread, the next pipeline stage may

be used by the instruction from the third thread and so on. Effectively, here, we are actually



sharing our pipeline stages across multiple threads. And we are also not considering any flush

mechanism as that was considered in coarse grain mechanism.

So, as a result we are not going to incur any penalty also. And because we are switching

between  threads  at  every  cycle,  so,  this  fine  grain  multithreading  can  tolerate  pipeline

latencies as well as cache access latencies. When I say pipeline latencies, there may be an

ALU instructions which is going to take 3 cycle to complete its execution. So, that also can

be tolerated here. Similarly, there may be a load instruction which is going to take a 4 cycle

latency to get the data from L2 cache. That also can be tolerated by scheduling instructions

from the thread at appropriate time, but in order to hide this low latency as well as high

latency because of the cache misses or instruction execution.

So, we need to have enough number of threads in our system. So, once we have enough

number of threads we can switch across this large number of threads. So, that we can hide the

latencies associated with this long latency events or short latency events. And the processor

which actually implemented this type of fine grain multithreading is UltraSPARC T1 Sunss

Niagara l processor. And the current NVIDIA GPU processors also actually use this fine grain

multithreading. And this is conceptually simple to design and it provides a high throughput as

long as we have enough number of threads to support the overall computation. But the main

disadvantage with this fine grain multi threading is, the single thread performance is very

poor.

The main reason is, even through, if I do not have any dependencies among the instructions

of a single thread because of this threads switching across multiple threads and a system has

multiple thread contexts. So, as a result I have to delay the execution of this particular thread,

whatever I am interested in, because I will execute few instructions from this thread and wait

for some time to execute instructions from other threads and only when my turn comes back

and again I will execute instructions from my thread.

So, as a result single thread performance may not be improved and the overall performance of

single thread will be significantly lower, but the overall throughput will be higher. So, we are

trading single thread performance for improving the overall throughput of the system.



(Refer Slide Time: 36:48)

And  finally,  we  consider  a  simultaneous  multithreading.  And  this  simultaneous

multithreading is  actually  considering a  fine grain multi  threading as well  as Superscalar

processing mechanism. So, so far in the fine grain multithreading and coarse grain multi

threading, the underlying hardware keeps only one hardware thread active at any point of

time. So while we are issuing instruction from one thread, the other thread will not issue its

instructions to the processor. So, as a result we cannot exploit the thread level parallelism to a

full extent. So, but where as in the case of simultaneous multi threading we actually consider

issuing instructions from multiple hardware thread simultaneously.

Also, the previous designs, fine grain multi threading and coarse grain multi threading are

actually not considering out of order execution. So, here in this multithreading, we exploit the

Superscalar processing,  so, that is we can execute instructions in out of order fashion by

considering our register renaming part, by considering dynamic scheduling and other things.

As  a  result  this  simultaneous  multi  threading  is  actually  built  on  top  of  Superscalar

processors. 

Because we are actually considering the fine grain multithreading concept, so, we consider

thread scheduling policy as a round robin here. We can switch between multiple threads at a

cycle granularity. And we can share our pipeline stages across multiple threads. So, that is

what we are considering a dynamic pipeline partitioning mechanism. And we are not going to

consider a fresh mechanism here. And because we are considering the round robin scheduling



as well as dynamic pipeline partitioning, so, this simultaneous multithreading can tolerate the

pipeline latencies as well as cache access latencies, which may incur few cycles or which

may incur 10 to 20 cycles.

In order to improve the overall performance we need to have 2 to 8 thread context in our

system  so  that  we  can  get  maximum  benefits  and  Intel  Pentium  4  processor  actually

implemented this simultaneous multithreading under the name of “Hyper threading”. So, here

we can see, so in cycle 1 we actually issued one instruction from first thread, one instruction

from second thread, one instruction from third thread and one instruction from the 4th thread.

So, effectively in a single cycle we issued 4 instructions, one from each of the threads. So,

that,  we can  execute  these  instructions  on  available  functional  units.  So,  as  a  result  our

functional  unit  utilization  will  be  improved.  In  the  second  cycle  again  we  can  issue  4

instructions at max because this system is supporting 4 issue, but because of dependencies or

because of not able to find independent instructions, here in this particular cycle we issued

only 3 instructions from 3 different threads.

This thread is not able to issue a next instruction. Similarly, we are not able to find second

instruction from any of these threads. And some times we can even issue all 4 instructions

from this single thread also. So, effectively at each cycle we will see which thread can issue

an instruction onto the functional unit. And if you can find multiple instructions from a single

thread we can issue those multiple instructions onto the functional units and we can improve

the overall performance.

So, as a result at every cycle we will look at all possible threads and see which thread can

supply instructions. A thread can supply 1 instruction, 2 instructions or multiple instructions.

And as long as we find some issue slot is free then we can go to next thread and see whether

we can issue one instructions from that particular thread and so on. So, as a result we can

minimize the resource wastage significantly and the overall performance can be improved by

using this simultaneous multithreading.

So, this simultaneous multithreading can improve the throughput significantly and it hides the

memory latency. Even if  we are incurring an L3 cache miss we can hide the latency by

servicing request from a different thread. So, as long as if a thread is waiting for some L3

cache miss to be serviced,  we stop fetching from that particular thread.  We stop fetching



instruction from that particular thread and we execute instruction from different threads. So,

as a result we can improve the overall performance.

Here because in this simultaneous multi threading multiple hardware threads can be active

simultaneously. So, we have to share our resources also. So, we have to have multiple fetch

queue, we have to have multiple decode units, we have to have multiple the issue queues, we

have to have multiple retire queues and we have to partition our rob across these multiple

threads, so, that they can execute their instructions without having any difficulty.

Because  resource  sharing  is  happening  in  the  simultaneous  multithreading  so,  we  can

consider  either  the  static  partitioning  method  or  we  can  consider  dynamic  partitioning

method. And depending on the application requirements we can consider different proportion

of our resources will  be given to different threads. So, that is what can be considered in

dynamic partitioning. And if you do not want this dynamic partitioning method we can go for

static partitioning where we can divide our resources equally across multiple threads.

So, that everyone will get equal share and they can use these resources. So, again here in

order to consider static or dynamic, we have to consider whether fairness is important for us

or performance is important and depending on our requirements we can consider either the

static partitioning or the dynamic partitioning. But because here multiple threads are active

simultaneously and these threads can use the TLBs and the caches in a sharing mode and

because of that there may be significant number of conflicts occur in the TLBs and the caches

and that may degrade the performance.

So, as a result when we are dealing with simultaneous multithreading, we have to consider

the  efficient  sharing  mechanisms  in  these  shared  resources.  So,  that  the  performance

degradation because of these conflicts can be minimized and we can improve the overall

performance of the system.



(Refer Slide Time: 44:12)

So, in summary we can look at different processor designs and see how each of these designs

are  making  use  of  the  functional  units  in  each  processor  cycle  and  improve  the  overall

performance.  So,  if  we consider  super  scalar  processor  because  here  instructions  from a

single thread will be issued on to the functional units and because of lack of instruction level

parallelism we may not efficiently utilize all processor cycles and all the functional units in

each cycle.

And in order to overcome this problem, we can go to different design that is called as coarse

grain multithreading, where we can switch between multiple threads, whenever the currently

executing  thread  encounters  a  long latency  event  we switch  to  another  thread  and  issue

instruction from the selected thread and continue execution. So, as a result we can minimize

some of the resource wastage as compared to the super scalar processor, but again in the

coarse grain multithreading we are switching between threads only on long latency events.

So, in order to further improve the overall performance we can actually go for fine grain

multithreading, where switching happens at every cycle. So, we fetch instructions from one

thread in cycle 1 and we switch to a second thread and issue an instruction from second

thread and we will continue this process. But in a single processor cycle we fetch instructions

and issue instructions from single thread. So, as a result still in that particular thread, if we are

not able to identify enough ILP, then we waste functional units in that particular cycle and

that is what we can see here.



There are still some empty boxes that indicate that some of the functional unit cycles are

wasted  if  you use  fine  grain  multithreading.  So,  in  order  to  further  improve  the  overall

performance or in order to further improve the resource utilization, we can actually go for

simultaneous multithreading where, in each cycle of multiple threads will be active and they

issue instructions from the corresponding threads on to the functional units. So, as a result we

can minimize the resource wastage, so that we can improve the overall performance. 

So, as we move from Superscalar all the way up to simultaneous multithreading, we can

improve the resource utilization which in turn improve s overall throughput and performance

of the system. So, with that I am concluding this multithreading concept and in the next

module  we  are  going  to  look  at  multi-core  architectures  which  exploit  thread  level

parallelization at a bigger scale.

Thank you


