
Computer Architecture
Prof. Madhu Mutyam

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module – 07
Lecture – 26

Dynamic Execution Core

In this module we are going to discuss one of the key components of Superscalar processors

that is dynamic execution core. So, we know that in the Superscalar processor we have the

Inorder fetch, Inorder decode, Inorder dispatch, but we have out of order execution. And

finally, Inorder commit the Inorder retirement will be there. This dynamic execution core is

the one which is actually implements the out of order execution of the instructions.

(Refer Slide Time: 00:50)

And this dynamic execution core actually resembles a refinement of Tomasulo

implementation. So, we know that execute stage is sandwiched between the dispatch stage

and the complete stage in our Superscalar pipeline design. So, in the dispatch stage we have

the decoded instructions and these decoded instructions will be dispatched to various

reservation stations. And at the time of dispatch the operands may be ready. So, we take the

operands, if they are ready and dispatch these operands along with the instructions to the

reservation station. And if the operands are not ready then we will dispatch the register tags

along with the instruction to the reservation stations. So, when the operands are ready we can

read the operands either from the architectural register file or from the renamed register file.

And that will be fed here to the reservation stations.

Again among the several reservation stations, we are going to select a suitable reservation

station based on the type of the instruction. And each of this reservation stations is going to

take care of issuing the instructions that are stored in the reservation station to the

corresponding functional units. And here we have multiple functional units and different

functional unit may take different latencies. So, as a result the instructions can finish their

execution in different number of cycles. And again an instruction can be issued to a

functional unit only when both of its operands are ready and as well as the functional unit is

free. If any of these things are not ready or available, then we cannot issue the instructions to

the functional unit. So, as and when the instructions finish its execution then we can forward

the computed value along with registered tag through this bus back to the reservation stations,

as well as to the renamed register files.

This is mainly to ensure that all the dependent instructions will get the operands as soon as

the parent instruction finishes it is execution. And as and when the instruction is finished it is

execution then the value will be updated in her reordered buffer also. So, we have this

completion buffer also called as reorder buffer and from there we will complete the

instructions Inorder. So, in order to provide the Inorder commit in this stage, we are always

going to select the instructions which are at the head of the reorder buffer.

We take that instruction and then send it to the completion stage for the completion of the

execution of that instruction. So, when I say an instruction is going through the complete

stage. So, the values will be written to the architectural registers specified in the instruction.

And also whenever the instruction is going through the complete stage, if the value is there in

the renamed register file then we will write that value back to the architectural register file by

using this mapping mechanism between ARF and RRF, that we discussed in the previous

modules.

So, effectively the dynamic execution core consists of a set of tasks, one is the instruction

dispatch, second one is instruction execution and third one is instruction completion. So, as

part of this instruction dispatch, we take care of the register renaming allocation of entries in

reservation station as well as reorder buffer and advancing the instruction from the dispatch

buffer to the reservation station, as part of the instruction execution. We issue the ready

instructions to the functional units and execute these instructions on the functional units. And

as and when the computation is done we will forward the results through using this forward

bus back to the reservation stations as well as to the renamed register file.

Once the instruction is finished its execution and if it comes to the head of the ROB, then we

will complete the instruction by writing the values to the architectural registers. And we

already discussed in the previous modules the role of renamed registers because in order to

eliminate the name dependencies among the instructions we are going to use register

renaming. So, as a result the both the output dependencies and the anti-dependencies can be

eliminated from the instructions. And we allocate an entry into the reservation station because

the instructions will be waiting in the reservation station after the dispatch and they will wait

until both the operands are available and as well as the functionality is available. And we also

allocate an entry in the reorder buffer for all the instructions which are having an infinite

status. So, that is nothing but all the instructions that are there either in the reservation

stations or that are executed by the functional units or those instructions which are finished

their executions, but not yet completed will have an entry in the reorder buffer.

And we already discussed that reorder buffer is mainly helps in committing the instructions in

the inorder. And so once we find a free entry in the reservation station, then we can dispatch

an instruction from the dispatch buffer to the reservation station. If the reservation station is

full then we cannot dispatch any instruction to that reservation station. And once the operands

are ready as well as the functionality is available then we execute this instruction on the

function unit. And depending on the type of functional unit, different instructions will take

different amount of time. And as soon as they finish their execution we write these values to

the corresponding entries in the reorder buffer as well as we forward these computed values

to the reservation stations as well as the renamed register file. So, that any dependent

instructions which are waiting in the reservation station for this computed value will get that

value and then they can make their operands ready. And similarly, because the renamed

register is waiting for this computed value to be updated. So, once we forward this computed

values, then it will be updated in the register file as well as we update the other fields of the

corresponding entry.

To inform that the value that is stored in the renamed register is the valid value. And we take

one instruction at a time from the front of the ROB and we commit. And while we were

committing the instructions, we are actually writing the values from renamed register file to

the corresponding architectural registers and that completes the execution of an instruction.

And if the instruction is store instruction then in addition to the complete stage we also have

our Retire stage. And in the Retire stage we are actually writing values to the memory. So,

this is the core of the Superscalar processor the dynamic execution core is the critical

component in the Superscalar processors, which actually executes instructions in out of order

fashion and commits the instructions in the inorder. And because of these various functional

units as well as because of these register renaming and the reservation station we can achieve

out of order execution of instructions. So, that instruction execution can be over lapped for all

the independent instructions and that will improve the overall performance of the system. So,

we will see how the dynamic instruction scheduler can be designed. So, the dynamic

instruction scheduler includes the instruction window and it is associated instruction wake up

and the select logic.

(Refer Slide Time: 09:26)

We already discussed as part of reservation stations that, each reservation station consists of

wake up logic as well as select logic associated with it. So, this dynamic instruction scheduler

can be designed in one of the 2 ways. In the first design this is called as instruction scheduler

design with data capture. So, here the functional units are here and the register file is here.

And in between register file and the functional units we have this reservation station. So, here

what happens is so, whenever functional unit finishes its execution, we forward the computed

value to the reservation station and also to the register file.

And while we are forwarding this value from the functional unit to the reservation station,

this also will be acting like a wake up logic for the entries that are stored in the reservation

station. And in the case of forwarding value from the functional unit to the register file we are

actually writing this value directly to the corresponding entry in the register file. And this

register file consists of both the renamed register file as well as the architectural register file.

So, of course we are writing value only to the renamed register file. So, as a result once we

consider this type of design, whenever we are dispatching an instruction to the reservation

station, at the time of dispatch we read the values from the register file if the values are

available. So, these values can be read either from the architectural register file or renamed

register file provided values are available in the register file. If the values are not available in

the register file at the dispatch time, then what we can do is we can forward the register tag

and along with instruction. So, that this dispatch instruction will be stored in the reservation

station with the corresponding register tags.

So, in other words the dispatch instruction will be staying in the reservation station or waiting

in the reservation station until the corresponding values are available. Once the values are

available for the instruction which is waiting in the reservation station, then we can issue this

instruction to the functional unit. So, in order to know when to issue an instruction that is

waiting in the reservation station to the functional unit, we actually use this make up logic.

So, remember the wake up signal is just by passing the register tag to the reservation station.

Any instruction which is waiting for the operands for the corresponding register tag will get a

wake up signal and the value will be written to the appropriate location in the reservation

station. So that, that instruction can be now ready for executing on the functional units. So,

that we will pick the selected instruction or we pick the ready instruction which is selected by

the selection logic and we send it to the functional unit.

If we consider this type of design our reservation station is very wide because it has to keep

the register contents in each of the reservation station, as well as the forwarding path between

the functional unit to the reservation station also needs to be very wider because we are going

to forward the values on this. This is one type of design, but some of the processors are

following the other types of design.

That is dynamic instruction scheduler without data capture. So, here what we do is we reorder

these 2 units. So, we have non data capture scheduling window here. And we have a register

file here and functional units here. So, this non data capture instruction scheduling window

locates all the instructions that can be dispatched to the functional units or issued to the

functional units. And whenever this logic gets a wake up signal from the functional unit then

it selects the instruction. And then it is going to issue to the functional unit, but while it is

issuing to the functional unit, it also goes to the register file and read the appropriate values

and then send it.

So, in this particular design, our reservation station will have only the register tags, but not

contents of the registers, whenever functional executes an instruction it forwards the data

through this forwarding path to the register file, but it forwards the register tag of the

computed value to the reservation station. So, this tag can be acting like a wake up logic or

wake up signal for all the instructions which are waiting in the reservation station. For

example, consider an instruction ADD R1 R2 R3 where R2 R3 are source operands and R2 is

already available and R3 is not yet computed because R3 is going to be produced by a

previous instruction and which is actually executed on this particular functional unit.

So, as soon as this functional unit finishes the previous instruction. So, now it forwards the

R3 value through this forwarding path to the register file, but R3 tag is forwarded through

this wake up path to the reservation station. So, that now this instruction which is waiting the

reservation station will get a signal from the functional unit saying that R3 is now ready. So,

as soon as it gets a ready signal here because already R2 is ready in the instruction.

So, now this instruction is now scheduled to the functional unit. And while it us being

scheduled on this functional unit we read the value of R2 and R3 from the register file and

these values will be supplied to the functional unit. So, then this instruction will be executed

on functional unit. So, because of this non data capture mechanism our reservation station

will be very thin compared to very fat reservation station, whatever we consider in the

previous design because here with each entry of the reservation station, we need to store only

the registered tag, but not the contents that are stored in the register.

Also wake up logic path between functional unit to the reservation station will be very thin

because here all we require is, we need to pass only the register tag as part of the wake up

logic, but whereas in the previous design we have to pass both the register tag as well as

computed values. So, this is going to take wider bus but whereas, here this is going to take

very thin bus.

So, these are the two different mechanisms in which we can design our instruction scheduler,

but the problem with without data capture design is, so register file read is in the critical path

because before dispatching any instruction to the functional unit or before issuing instruction

to the functional unit, we have to read content from register file. So, as a result this register

file requires multiported design and that is going to increase the execution time also.

So, again these 2 designs have their trade-offs. One design is eliminating the register file read

from the critical path. So, as a result it can improve the performance, but it is going to take

more area because of the fat reservation station as well as the wider forwarding path, but

whereas, the other design. So, it is not going to take significant area because we adjust storing

the register tags, but the register file read is in the critical path for issuing an instruction to the

functional unit.

(Refer Slide Time: 18:02)

So now, we are going to discuss the processing of load store instructions using our dynamic

execution code. We know that the load store unit is also one of the functional units in our

dynamic execution core. And this unit is going to process all load and the store instructions

that are there in our program. So, we consider load store architecture where ALU operation

will be performed only on registers, but the number of registers in a typical processor is

limited. So, as a result we cannot keep all the required data in our limited number of registers.

So, as a result some of the required data will be stored in the memory and we have to go to

the memory to get those data. And to go to the memory we are going to use load and store

instructions. Load instruction is going to load the data from the memory in a specified

location and the store instruction is going to write the specified data in specified location in

the memory. So, in order to process this load and store instruction we have separate unit

called Load-Store unit. And this load-store unit is connected to the data memory. So, that it

can perform a read operation or a write operation from or to the data memory.

And if it is store instruction we already discussed earlier, that the data will be written to the

memory only when the instruction is processing through the retirement stage. Similar to the

ALU instructions the memory instructions also have these dependencies among them. So, a

memory data dependence exists between the 2 load and store instructions, if both these

instructions refer the same memory locations.

(Refer Slide Time: 20:04)

But how do we know whether two instructions are actually referring to same memory

location? Any load and store instruction typically consists of 2 components, one is proving

the base address and other is providing the offset. We have to add this base address contents

with the offset to get effective address. And this effective address is an address location in the

memory generated by program. And when we have a system supporting virtual memory this

address is effectively the virtual address. So, we need to convert this address into physical

address that is the address stored in main memory. And from there using that address we go to

the memory and get the data from that particular location.

Or we have to write the data to that particular location. So, as a result, so in order to identify

the data dependencies among memory instructions, first thing what we have to do is, we have

to compute the effective address. Once we compute the effective address then we know

whether 2 memory instructions are dependent on each other or not. So, in order to enforce

this data dependencies, one option what we can do is execute all the load and store

instructions in the program order to enforce this memory data dependencies.

We should not opt for this option one because it is going to degrade the performance

significantly, as we execute all the load and store instructions in the program order to enforce

the data dependencies. So, we can relax the option one slightly by considering this ordering

only for the store operations. So, once we enforce that all the stores must be completed or

executed in the program order we can preserve the sequential state of the memory, to recover

from any exceptions happening in our program execution.

In the case of loads, we do not have to enforce this constraint. So, that effectively in order to

improve the overall performance in our Superscalar processor, we can execute load

instructions in out of order fashion to improve the overall performance, but this out of order

load instruction can be done as long as we maintain the true dependence among the

instructions and so on.

So, from this we know that rather than forcing all the load and store instruction to executing

the program order to enforce memory data dependencies, we can just enforce only the store

instructions to execute in the program order. So, because of this relaxed constraint now we

have the option to execute the load instruction in out of order fashion. Now, we will consider

2 examples. First example is a piece of code consists of a store instruction writing to a

memory location address x.

There is a store instruction after some time writing some data to an address location y in the

memory and after some time there is load instruction in the program which is going to read

data from address location z. Now, in this case we clearly know that this load instruction is

independent of these store instructions, but if we are following the option one which says that

we have to execute all the load and store instructions in the program order. If it is so then we

have to execute this load instruction only after we execute store x and store y.

That is actually going to degrade the performance because we know that this load instruction

is independent of the previous stores, there is no point in delaying this load instruction until

the store instructions are finished their execution. So in this type of scenario what we can do

is, we can go ahead with load bypassing. So, this load instruction can bypass the previous

store instructions. So, that this load will be executed in a speculative way in an out of order

fashion and it finishes it is execution.

Now, consider another example. So, here we have a store instruction writing to an address

location x in the memory after sometime there is a store instruction writing something to

address location y in the memory and after sometime there is a load instruction loading some

value from an address location x. Now, this load instruction is independent of this store

instruction, but this load instruction is same as or dependent on the store instruction because

both load and store are actually going to perform operation on same memory location.

So, in such scenarios this load cannot be executed before these 2 stores. And this load

actually can get value supplied by store instruction. So, as a result we can exploit the other

optimization to deal with the load instruction that is the load forwarding. This store

instruction is going to supply the value to the trailing load instruction which is also pointing

to same address location in the memory. As a result this load instruction need not access the

memory to get the value and this load can be executed quickly.

So, effectively when we have such scenario where sometimes loads can be independent of

previous stores or sometimes load can benefit from previous stores. So, we can exploit the

load bypassing or load forwarding mechanisms to execute these instructions in these loads

instruction in out of order fashion and improve the overall performance. Effectively the

option 2 to deal with memory operations is will go for out of order execution of loads. So,

that we can improve the overall performance, but when we are going for this out of order

execution of loads, we have to ensure that read after write dependencies are not violated that

is like true dependencies are not violated among the instructions.

As long as we ensure true dependencies are not violated, we can execute our load instruction

in an out of order and speculative way so that, the overall performance can be improved. So,

now in order to support this load bypassing and load forwarding we have to see how our load

store unit needs to be designed in our dynamic execution core of the Superscalar processor.

(Refer Slide Time: 26:56)

So, here as the previously in our dynamic execution core we consider load store unit as a

single unit, but we now separate load and store units because the operations involved with the

store instruction execution will be different from the operations involved with the execution

of load instruction. So, as a result we consider 2 separate units, one is a load unit which takes

care of all the load instructions and the other one is store unit which takes care of all the store

instructions. So, in order to support the store instruction execution and completion, we will

consider a store buffer.

And here the store instruction which completes the address translation will be sent to this end

of the store buffer and these entries are corresponding to the store instruction which finish

their execution and whereas, these entries in the store buffer are corresponding to which

completes there execution. In the case of store instruction we consider 2 staged pipeline for

executing the store instruction.

The first stage is corresponding to the address generation the second stage is corresponding to

the address translation. And here the first stage we are going to complete the effective address

calculation by adding the contents of base register and the offset. And the second stage of this

pipelining is address translation where we go to the TLB and get the physical address for the

corresponding the address whatever is generated in the first phase. And after that we say the

store instruction is finish its execution. So, that we write the corresponding store instruction

to the store buffer and so that the instructions will be waiting in the store buffer as long as the

cache or the memory is not available for servicing this store instruction.

Whenever the data cache or the memory is available, then we will select one instruction from

this store buffer in the program order and then we will write it to the data cache or the

memory. So, here the store buffer is actually working in the FIFO order because we already

discussed on the previous point, that all the store instructions are executed in the program

order. So, as a result we will just always select instructions in the stored buffer in the FIFO

order and here in the case of load instructions. So, our load unit consists of 3 pipeline stages.

First 2 pipeline stages are same as the store unit pipeline stages there is address generation

and address translation. And once we translate the address now we have the effective address

in the main memory. Then we can go to the memory or if our system is supporting the data

caches then we will go to the data cache using this translated address and then we will read

data from that particular location to this. So, effectively the third stage of this load unit

pipeline is the memory access, where the actual access from the data cache happens.

(Refer Slide Time: 30:05)

In order to exploit the load bypassing, we have to modify our store unit slightly by

considering an address field for each of the entries of store buffer, by adding this extra

components which has a partial address of the this store instructions, we can compare the

partial address of the subsequent load instructions with this and to know whether there is

match or not. If there is no match then we are going to execute this load instructions in out of

order fashion with respect to the previous one, previous store instructions.

(Refer Slide Time: 30:46)

And now in order to support the load forwarding unlike the load bypassing mechanism, in the

load forwarding we are going to actually forward the data that is stored in the store buffer to

the trailing load instructions. So, as a result here we need to consider the full address

associated with each entry of this stored buffer. So, note that in the case of load bypassing we

consider only the partial address associated with each of these stored buffers. So, when we

consider the partial address sometimes the partial address may match, but the full address

may not match.

That is not going to create a significant penalty in our design, but that considering the partial

address is going to save the area overhead associated with the store buffer design, that is the

reason why in the load bypassing case we consider the partial addresses, but in order to

consider the load forwarding we have to consider the full address associated with each entry

in the store buffer. So, that only when all the bits of store address is matching with the load

instruction address, then only we can forward the value stored in the data field of the

corresponding entry in the store buffer to the load instruction.

So, here whenever a load instruction comes here we just compare the tags. And if there is a

match then for this load instruction we do not have to go to the cache or the memory to get

the data actually the store instruction supply. So, whenever there is a match we forward this

value directly to the load instruction. Of course so, this extra component is going to add some

complexity to the overall design of the store buffer because here in the case of load

forwarding we have to consider full length address bits for each of the entries of the store

buffer.

That maybe like 32 bits or 64 bits depending on what are the processor we are considering.

And also whenever we have the translated address we have to search in all the entries. So, for

that we have to actually use a priority encoding logic to identify the latest store. We may have

multiple stores writing to the same location memory, but we always have to consider latest

stores. So, for that we have to use a priority encoding logic.

Also in the original design of the store buffer we have only one read port, but now because of

this added component we need to have 2 read ports for the store buffer. And increasing the

number of ports is also going to increase the access time of the store buffer as well as the

power consumption, in addition to the area over head. So, these are the extra added

complexities to the store buffer, to support our load forwarding mechanism.

(Refer Slide Time: 33:27)

So, once we have the support for the load forwarding or load bypassing, by using these extra

components to the store buffer. Now, we can execute instructions, we can execute load

instructions in out of order fashion. Here in this particular design we consider a separate load

buffer to take care of all the finish load instructions. Again here we are splitting the load

instruction execution into execution finish and execution complete. And at the time of

execution finish, we write the data to this buffer. Now, we can consider a simple example we

have store instructions store x and load y. So, this load instruction is actually coming after

store instruction.

Now because this load instruction is independent of the store instruction, so we can execute

this load instruction in out of order fashion. So, in such scenario what we can do is, while the

store instruction is issued to the store unit, we issue the load instruction to the load unit. After

the second stage of the load instruction pipeline processing we have the translated address.

And so, once we have this translated address, we give this translated address to this address

unit of the store buffer to see whether this instruction is matching with any of the previous

store instructions.

While we are doing this, we will proceed with the third stage of the load instruction

pipelining by going to the data cache or the memory to read the data from the location

specified by this translated address. So, that at the end of the third stage we have the data

from the data cache. Now, what we are going to do is, once we have the data at the end of the

third stage of the load instruction processing. We write this value to the updated renamed

register. We write this value to the renamed register to update the renamed register content.

So, with that we actually finish the execution of this load instruction, but remember this load

instruction is executed in an out of order fashion with respect to the previous store

instruction. And we do not know whether this load instruction is actually dependent on the

previous store instructions or not. That we will know only by comparing this address with the

addresses of the corresponding store buffer entries. If there is a match with any of the data

that is stored in the store buffer that indicates that this load instruction is dependent on the

previous stores. And we have to flush this particular entry.

So, if there is a match happens then flush the alias load and all the trailing instruction. So,

that we can revert it back to a state where we start executing again, from where we can start

executing the load instruction, by taking the value from store instruction. And if there is no

match happens between this translated address of the load instruction with any of the

translated address of the previously finished store instructions then there is no problem and

this load instruction can peacefully finishes it is execution. And all the dependent instructions

can take the value from this load instruction and execute their instructions.

So, that means if there is no match we do not have to flush anything here. And we can

proceed and after sometime this load instruction can come to the head of the ROB and then

we can complete the execution of this load instruction. And at that particular point of time we

update the architectural register. So, that means we update the corresponding register in the

ARF by taking the value from the corresponding register in the RRF.

So, we do that and with that we finish the out of order execution of an instruction. In order to

execute this trailing load instruction ahead of the store instructions and also minimize the

penalty associated with flushing this load instruction or subsequent dependent instructions we

have to use some data dependence prediction mechanisms, to see whether our load instruction

is independent of previous store instructions and whether we can execute the trailing load

instructions speculatively ahead of the previous store instructions.

If our prediction mechanism is correct then we can minimize the number of flushes as well as

we can improve the overall performance associated with the out of order execution of the

instructions. So, far we consider single ported data cache where at any point of time only one

load instruction can go to the data cache and read the data from the data cache. In order to

improve the memory bandwidth or in order to improve overlap the processing of multiple

load instructions simultaneously by the data cache, what we can do is, we can consider a dual

ported the non-blocking cache.

(Refer Slide Time: 38:43)

So, when we consider the dual ported data cache. So, simultaneously we can service multiple

load instructions by this data cache. Of course, when we consider a dual ported we have to

consider dual load units. In this particular design we can serve 2 read ports associated with

the data cache. So, as a result at any point of time 2 load instructions can read data from this

data cache in their third pipeline stage of load instruction processing. And also in order to

improve the overall bandwidth, we can consider this data cache as non-blocking cache.

So, that even if the previous instruction is not completed or finished its processing, this data

cache can take new request and start processing. So, effectively at any point of time the data

cache can service multiple requests coming from the processor. So, because of this dual

ported non-blocking data cache, we can improve the overall bandwidth and improve the

overall performance of the system. So, with that we conclude the Superscalar processor

design.

(Refer Slide Time: 40:08)

In summary, exploit the instruction level parallelism to improve the overall performance of

the system. So, by using this compiler as well as the hardware techniques, we can expose the

ILP that is there in our programs, so that we can improve the overall performance by

executing these independent instructions on our underlying Superscalar hardware units. And

the key components in the dynamic scheduling associated with the Superscalar processor are

register renaming, reservation station, reorder buffer and operands forwarding.

And we already discussed that register renaming eliminates name dependencies among

instructions and reservation stations will take care of structural hazards as well as the true

dependencies. So, as a result when we want to execute instructions in an out of order fashion,

we have to respect the true dependencies. And as long as the true dependencies are respected

we can execute instruction in out of order fashion, as long as functional units are available.

So, that we can overlap execution of multiple independent instructions, by executing these

instructions on different functional units available with our Superscalar processor.

Finally, in order to maintain the program correctness we have to commit the instructions in

the inorder. So, to do that we take the help of reorder buffer which ensures inorder commit of

instructions. And in order to improve the performance associated with the load and store

instructions we can exploit the load bypassing as well as the load forwarding mechanisms.

So, that we can execute instructions in an out of order fashion and improve the overall

performance. But in order to maintain the program correctness we have to process our store

instructions in the program order only. So, with that I am concluding the Superscalar

processor unit design.

Thank you.

